数据结构和算法
7.1 数据结构基础
如何理解基础的数据结构?
避免孤立的学习知识点,要关联学习。比如实际应用当中,我们经常使用的是查找,排序以及增删改,这在我们的各种管理系统、数据库系统、操作系统等当中,十分常用,我们通过这个线索将知识点串联起来:
- 数组的下标寻址十分迅速,但计算机的内存是有限的,故数组的长度也是有限的,实际应用当中的数据往往十分庞大;而且无序数组的查找最坏情况需要遍历整个数组;后来人们提出了二分查找,二分查找要求数组的构造一定有序,二分法查找解决了普通数组查找复杂度过高的问题。任何一种数组无法解决的问题就是插入、删除操作比较复杂,因此,在一个增删查改比较频繁的数据结构中,数组不会被优先考虑
- 普通链表由于它的结构特点被证明根本不适合进行查找
- 哈希表是数组和链表的折中,同时它的设计依赖散列函数的设计,数组不能无限长、链表也不适合查找,所以也不适合大规模的查找
- 二叉查找树因为可能退化成链表,同样不适合进行查找
- AVL树是为了解决二叉查找树可能退化成链表问题。AVL树是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差的绝对值不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况。
- 红黑树是二叉查找树和AVL树的折中。它是一种弱平衡二叉树,但在每个节点增加一个存储位表示节点的颜色,可以是红或黑(非红即黑)。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍,因此,红黑树是一种弱平衡二叉树(由于是弱平衡,可以看到,在相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索,插入,删除操作较多的情况下,我们就用红黑树。
- 多路查找树 是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下。
- B树与自平衡二叉查找树不同,B树适用于读写相对大的数据块的存储系统,例如磁盘。它的应用是文件系统及部分非关系型数据库索引。
- B+树在B树基础上,为叶子结点增加链表指针(B树+叶子有序链表),所有关键字都在叶子结点 中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。通常用于关系型数据库(如Mysql)和操作系统的文件系统中。
- B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针, 在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。
- R树是用来做空间数据存储的树状数据结构。例如给地理位置,矩形和多边形这类多维数据建立索引。
- Trie树是自然语言处理中最常用的数据结构,很多字符串处理任务都会用到。Trie树本身是一种有限状态自动机,还有很多变体。什么模式匹配、正则表达式,都与这有关。
7.2 算法思想
有哪些常见的算法思想?
- 分治算法 :分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解
- 动态规划算法: 通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。和分治算法最大的差别:适用于动态规划算法求解的问题经过分解后得到的子问题往往不是相互独立的,而是下一个子阶段的求解是建立在上一个子阶段的解的基础上的。
- 贪心算法: 保证每次操作都是局部最优的,并且最后得到的结果是全局最优的
- 二分法: 比如重要的二分法,比如二分查找;二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
- 搜索算法: 主要包含BFS,DFS
- Backtracking(回溯): 属于 DFS, 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法
7.3 常见排序算法
有哪些常见的排序算法?
在综合复杂度及稳定性情况下,通常希尔, 快排和 归并需要重点掌握
- 冒泡排序(Bubble Sort)
- 它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者比后者大,则交换它们的位置。这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大的元素就被排列在最大元素之前。重复此操作,直到整个数列都有序为止
- 快速排序(Quick Sort)
- 它的基本思想是: 选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
- 插入排序(Insertion Sort)
- 直接插入排序(Straight Insertion Sort)的基本思想是: 把n个待排序的元素看成为一个有序表和一个无序表。开始时有序表中只包含1个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,将它插入到有序表中的适当位置,使之成为新的有序表,重复n-1次可完成排序过程。
- Shell排序(Shell Sort)
- 希尔排序实质上是一种分组插入方法。它的基本思想是: 对于n个待排序的数列,取一个小于n的整数gap(gap被称为步长)将待排序元素分成若干个组子序列,所有距离为gap的倍数的记录放在同一个组中;然后,对各组内的元素进行直接插入排序。 这一趟排序完成之后,每一个组的元素都是有序的。然后减小gap的值,并重复执行上述的分组和排序。重复这样的操作,当gap=1时,整个数列就是有序的。
- 选择排序(Selection sort)
- 它的基本思想是: 首先在未排序的数列中找到最小(or最大)元素,然后将其存放到数列的起始位置;接着,再从剩余未排序的元素中继续寻找最小(or最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
- 堆排序(Heap Sort)
- 堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
- 归并排序(Merge Sort)
- 将两个的有序数列合并成一个有序数列,我们称之为"归并"。归并排序(Merge Sort)就是利用归并思想对数列进行排序。
- 桶排序(Bucket Sort)
- 桶排序(Bucket Sort)的原理很简单,将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)
- 基数排序(Radix Sort)
- 它的基本思想是: 将整数按位数切割成不同的数字,然后按每个位数分别比较。具体做法是: 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列
7.4 大数据处理算法
何谓海量数据处理? 解决的思路?
所谓海量数据处理,无非就是基于海量数据上的存储、处理、操作。何谓海量,就是数据量太大,所以导致要么是无法在较短时间内迅速解决,要么是数据太大,导致无法一次性装入内存。
那解决办法呢?
- 针对时间: 我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树;
- 针对空间: 无非就一个办法: 大而化小,分而治之(hash映射);
- 集群|分布式: 通俗点来讲,单机就是处理装载数据的机器有限(只要考虑cpu,内存,硬盘的数据交互); 而集群适合分布式处理,并行计算(更多考虑节点和节点间的数据交互)。
大数据处理之分治思想?
分而治之/hash映射 + hash统计 + 堆/快速/归并排序,说白了,就是先映射,而后统计,最后排序:
-
分而治之/hash映射: 针对数据太大,内存受限,只能是: 把大文件化成(取模映射)小文件,即16字方针: 大而化小,各个击破,缩小规模,逐个解决
-
hash_map统计: 当大文件转化了小文件,那么我们便可以采用常规的hash_map(ip,value)来进行频率统计。
-
堆/快速排序: 统计完了之后,便进行排序(可采取堆排序),得到次数最多的IP。
海量日志数据,提取出某日访问百度次数最多的那个IP?
分析: “首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如%1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map对那1000个文件中的所有IP进行频率统计,然后依次找出各个文件中频率最大的那个IP)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。”
关于本题,还有几个问题,如下:
- Hash取模是一种等价映射,不会存在同一个元素分散到不同小文件中的情况,即这里采用的是mod1000算法,那么相同的IP在hash取模后,只可能落在同一个文件中,不可能被分散的。因为如果两个IP相等,那么经过Hash(IP)之后的哈希值是相同的,将此哈希值取模(如模1000),必定仍然相等。
- 那到底什么是hash映射呢? 简单来说,就是为了便于计算机在有限的内存中处理big数据,从而通过一种映射散列的方式让数据均匀分布在对应的内存位置(如大数据通过取余的方式映射成小树存放在内存中,或大文件映射成多个小文件),而这个映射散列方式便是我们通常所说的hash函数,设计的好的hash函数能让数据均匀分布而减少冲突。尽管数据映射到了另外一些不同的位置,但数据还是原来的数据,只是代替和表示这些原始数据的形式发生了变化而已。
寻找热门查询,300万个查询字符串中统计最热门的10个查询?
原题: 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
解答: 由上面第1题,我们知道,数据大则划为小的,如如一亿个Ip求Top 10,可先%1000将ip分到1000个小文件中去,并保证一种ip只出现在一个文件中,再对每个小文件中的ip进行hashmap计数统计并按数量排序,最后归并或者最小堆依次处理每个小文件的top10以得到最后的结。
但如果数据规模比较小,能一次性装入内存呢?比如这第2题,虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query255Byte,因此我们可以考虑把他们都放进内存中去(300万个字符串假设没有重复,都是最大长度,那么最多占用内存3M*1K/4=0.75G。所以可以将所有字符串都存放在内存中进行处理),而现在只是需要一个合适的数据结构,在这里,HashTable绝对是我们优先的选择。
所以我们放弃分而治之/hash映射的步骤,直接上hash统计,然后排序。So,针对此类典型的TOP K问题,采取的对策往往是: hashmap + 堆。如下所示:
- hash_map统计: 先对这批海量数据预处理。具体方法是: 维护一个Key为Query字串,Value为该Query出现次数的HashTable,即hash_map(Query,Value),每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内用Hash表完成了统计; 堆排序: 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。即借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。所以,我们最终的时间复杂度是: O(N) + N' * O(logK),(N为1000万,N’为300万)。
别忘了这篇文章中所述的堆排序思路: “维护k个元素的最小堆,即用容量为k的最小堆存储最先遍历到的k个数,并假设它们即是最大的k个数,建堆费时O(k),并调整堆(费时O(logk))后,有k1>k2>...kmin(kmin设为小顶堆中最小元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比较,若x>kmin,则更新堆(x入堆,用时logk),否则不更新堆。这样下来,总费时O(k*logk+(n-k)logk)=O(nlogk)。此方法得益于在堆中,查找等各项操作时间复杂度均为logk。”--第三章续、Top K算法问题的实现。
当然,你也可以采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。
有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词?
- 分而治之/hash映射: 顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,...x4999)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
- hash_map统计: 对每个小文件,采用trie树/hash_map等统计每个文件中出现的词以及相应的频率。
- 堆/归并排序: 取出出现频率最大的100个词(可以用含100个结点的最小堆)后,再把100个词及相应的频率存入文件,这样又得到了5000个文件。最后就是把这5000个文件进行归并(类似于归并排序)的过程了。
海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10?
如果每个数据元素只出现一次,而且只出现在某一台机器中,那么可以采取以下步骤统计出现次数TOP10的数据元素:
- 堆排序: 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆,比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大)。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。
但如果同一个元素重复出现在不同的电脑中呢,如下例子所述, 这个时候,你可以有两种方法:
- 遍历一遍所有数据,重新hash取摸,如此使得同一个元素只出现在单独的一台电脑中,然后采用上面所说的方法,统计每台电脑中各个元素的出现次数找出TOP10,继而组合100台电脑上的TOP10,找出最终的TOP10。
- 或者,暴力求解: 直接统计统计每台电脑中各个元素的出现次数,然后把同一个元素在不同机器中的出现次数相加,最终从所有数据中找出TOP10。
有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序?
方案1:
- hash映射: 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为a0,a1,..a9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
- hash_map统计: 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。注: hash_map(query,query_count)是用来统计每个query的出现次数,不是存储他们的值,出现一次,则count+1。
- 堆/快速/归并排序: 利用快速/堆/归并排序按照出现次数进行排序,将排序好的query和对应的query_cout输出到文件中,这样得到了10个排好序的文件(记为)。最后,对这10个文件进行归并排序(内排序与外排序相结合)。
方案2: 一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3: 与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。
给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。
- 分而治之/hash映射: 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为,这里漏写个了a1)中。这样每个小文件的大约为300M。遍历文件b,采取和a相同的方式将url分别存储到1000小文件中(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
- hash_set统计: 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。”
怎么在海量数据中找出重复次数最多的一个?
方案: 先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。
上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据?
方案: 上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后利用堆取出前N个出现次数最多的数据。
一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析?
方案1: 如果文件比较大,无法一次性读入内存,可以采用hash取模的方法,将大文件分解为多个小文件,对于单个小文件利用hash_map统计出每个小文件中10个最常出现的词,然后再进行归并处理,找出最终的10个最常出现的词。
方案2: 通过hash取模将大文件分解为多个小文件后,除了可以用hash_map统计出每个小文件中10个最常出现的词,也可以用trie树统计每个词出现的次数,时间复杂度是O(nle)(le表示单词的平准长度),最终同样找出出现最频繁的前10个词(可用堆来实现),时间复杂度是O(nlg10)。
一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解?
方案1: 首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。
100w个数中找出最大的100个数?
方案1: 采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。
方案2: 采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。
方案3: 在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。
5亿个int找它们的中位数?
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。
实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成224个区域,然后确定区域的第几大数,在将该区域分成220个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
同样需要做两遍统计,如果数据存在硬盘上,就需要读取2次。
方法同基数排序有些像,开一个大小为65536的Int数组,第一遍读取,统计Int32的高16位的情况,也就是0-65535,都算作0,65536 - 131071都算作1。就相当于用该数除以65536。Int32 除以 65536的结果不会超过65536种情况,因此开一个长度为65536的数组计数就可以。每读取一个数,数组中对应的计数+1,考虑有负数的情况,需要将结果加32768后,记录在相应的数组内。
第一遍统计之后,遍历数组,逐个累加统计,看中位数处于哪个区间,比如处于区间k,那么0- k-1的区间里数字的数量sum应该(2.5亿)。而k+1 - 65535的计数和也,第二遍统计同上面的方法类似,但这次只统计处于区间k的情况,也就是说(x / 65536) + 32768 = k。统计只统计低16位的情况。并且利用刚才统计的sum,比如sum = 2.49亿,那么现在就是要在低16位里面找100万个数(2.5亿-2.49亿)。这次计数之后,再统计一下,看中位数所处的区间,最后将高位和低位组合一下就是结果了。
在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。
-
方案1: 采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。
-
方案2: 也可采用分治,划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。
给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?
用位图/Bitmap的方法,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。
7.5 加密算法
什么是摘要算法?有哪些?
消息摘要算法的主要特征是加密过程不需要密钥,并且经过加密的数据无法被解密,目前可以解密逆向的只有CRC32算法,只有输入相同的明文数据经过相同的消息摘要算法才能得到相同的密文。消息摘要算法不存在密钥的管理与分发问题,适合于分布式网络上使用。消息摘要算法主要应用在“数字签名”领域,作为对明文的摘要算法。
数字签名主要用到了非对称密钥加密技术与数字摘要技术。数字签名技术是将摘要信息用发送者的私钥加密,与原文一起传送给接收者。接收者只有用发送者的公钥才能解密被加密的摘要信息,然后用HASH函数对收到的原文产生一个摘要信息,与解密的摘要信息对比。如果相同,则说明收到的信息是完整的,在传输过程中没有被修改,否则说明信息被修改过.
因此数字签名能够验证信息的完整性。
数字签名是个加密的过程,数字签名验证是个解密的过程。
著名的摘要算法有RSA公司的MD5算法和SHA-1算法及其大量的变体
什么是加密算法?有哪些?
数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码为“密文”,使其只能在输入相应的密钥之后才能显示出原容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。 该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程。
加密算法分类
密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。
对称加密以数据加密标准(DES,Data Encryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Adleman)算法为代表。
对称加密的加密密钥和解密密钥相同。非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密
什么是国密算法?有哪些?
- SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用。
- SM2 非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
- SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
- SM4 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位。
- SM7 是一种分组密码算法,分组长度为128比特,密钥长度为128比特。SM7适用于非接触式IC卡,应用包括身份识别类应用(门禁卡、工作证、参赛证),票务类应用(大型赛事门票、展会门票),支付与通卡类应用(积分消费卡、校园一卡通、企业一卡通等)。
- SM9 不需要申请数字证书,适用于互联网应用的各种新兴应用的安全保障。如基于云技术的密码服务、电子邮件安全、智能终端保护、物联网安全、云存储安全等等。这些安全应用可采用手机号码或邮件地址作为公钥,实现数据加密、身份认证、通话加密、通道加密等安全应用,并具有使用方便,易于部署的特点,从而开启了普及密码算法的大门。