数论、莫比乌斯(mobius) 更新中

基本式子

n = p 1 α 1 p 2 α 2 ⋅ ⋅ ⋅ p m α m     ( p ∈ p r i m e ,     i ,    α i ∈ Z + ) n=p_1^{\alpha_1}p_2^{\alpha_2}···p_m^{\alpha_m}~~~(p∈prime,~~~i,~~\alpha_i∈Z_+) n=p1α1p2α2pmαm   (pprime,   i,  αiZ+)

l c m ( i , j ) ∗ g c d ( i , j ) = i ∗ j lcm(i,j)*gcd(i,j)=i*j lcm(i,j)gcd(i,j)=ij

常用数论函数

ϵ ( n ) = { 1 n = 1 , 0 n > 1. \epsilon(n)=\begin{cases}1& {n=1},\\ 0& {n>1.} \end{cases} ϵ(n)={10n=1,n>1.

I ( n ) = 1 I(n)=1 I(n)=1

i d ( n ) = n id(n)=n id(n)=n

d ( n )   因 子 个 数 ( 除 数 函 数 也 记 作 τ ( n ) ) d(n)~因子个数(除数函数也记作\tau(n)) d(n) (τ(n))

σ ( n )   因 数 和 \sigma(n)~因数和 σ(n) 

μ ( n ) = { 1 n=1 , ( − 1 ) k ∏ i = 1 m α i = 1 , 0 ∃   α i > 1. \mu (n)=\begin{cases}1& \text{n=1},\\ (-1)^k& \prod\limits_{i=1}^{m}\alpha_i=1,\\0 &\exists\space\alpha_i >1. \end{cases} μ(n)=1(1)k0n=1,i=1mαi=1, αi>1.

φ ( n )   欧 拉 函 数 ( 小 于 n 且 与 n 互 质 的 个 数 ) \varphi (n)~欧拉函数(小于n且与n互质的个数) φ(n) (nn)

ω ( n )   n 的 不 同 素 因 数 的 个 数 ,   ω ( 1 ) = 0 \omega(n)~n的不同素因数的个数,~\omega(1)=0 ω(n) n, ω(1)=0

θ ( x ) = ∑ p ≤ x ln ⁡ p \theta(x)=\sum\limits_{p\le x}\ln p θ(x)=pxlnp

Λ ( n ) = { ln ⁡ p n = p α , p ∈ p r i m e , α ≥ 1 , 0 o t h e r . \Lambda(n)=\begin{cases}\ln{p}&n=p^\alpha,p∈prime,\alpha\ge1,\\0&other.\end{cases} Λ(n)={lnp0n=pα,pprime,α1,other.

ψ ( x ) = ∑ n < = x Λ ( n ) \psi(x)=\sum\limits_{n<=x}\Lambda(n) ψ(x)=n<=xΛ(n)

数论相关公式(定理)

φ ∗ I = i d \varphi * I = id φI=id

μ ∗ I = ϵ \mu * I = \epsilon μI=ϵ

μ ∗ i d = φ \mu * id= \varphi μid=φ

1. φ ( n ) = n ∏ p ∣ n ( 1 − 1 p ) 1.{\varphi (n)}=n\prod\limits_{p|n}(1-\frac{1}{p}) 1.φ(n)=npn(1p1)

2. φ ( n ) = ∑ l = 1 n ∏ p ∣ n ( 1 − ∑ a = 1 p e 2 π l a p p ) 2.{\varphi (n)}=\sum\limits_{l=1}^{n}\prod\limits_{p|n}(1-\frac{\sum\limits_{a=1}^{p}e^{\frac{2\pi la}{p}}}{p}) 2.φ(n)=l=1npn(1pa=1pep2πla)

3. a φ ( n ) ≡ 1   ( m o d   n ) ,          ( a , n ) = 1             F e r m a t 小 定 理 3.a^{\varphi(n)}\equiv1~(mod \space n),~~~~~~~~(a,n)=1~~~~~~~~~~~Fermat小定理 3.aφ(n)1 (mod n),        (a,n)=1           Fermat

4. a p ≡ 1   ( m o d   p ) ,                p ∈ p r i m e            E u l e r 定 理 4.a^{p}\equiv1~(mod \space p),~~~~~~~~~~~~~~p∈prime~~~~~~~~~~Euler定理 4.ap1 (mod p),              pprime          Euler

5. ( p − 1 ) ! ≡ − 1   ( m o d   p )                                 W i l s o n 定 理 ( 特 殊 地 ) 5.(p-1)!\equiv-1~(mod~p)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Wilson定理(特殊地) 5.(p1)!1 (mod p)                               Wilson()

6. ∑ d ∣ n μ ( d ) φ ( d ) = 0 ,              2 ∣ n 6.\sum\limits_{d|n}\mu(d)\varphi(d)=0,~~~~~~~~~~~~2 | n 6.dnμ(d)φ(d)=0,            2n

7. ∑ d ∣ n μ 2 ( d ) = 2 ω ( n ) 7.\sum\limits_{d|n}\mu^2(d)=2^{\omega(n)} 7.dnμ2(d)=2ω(n)

8. ∑ d ∣ n μ ( d ) τ ( d ) = ( − 1 ) ω ( n ) 8.\sum\limits_{d|n}\mu(d)\tau(d)=(-1)^{\omega(n)} 8.dnμ(d)τ(d)=(1)ω(n)

9. ∑ d ∣ n μ ( d ) σ ( d ) = ( − 1 ) ω ( n ) = ∏ p ∣ n ( − p ) 9.\sum\limits_{d|n}\mu(d)\sigma(d)=(-1)^{\omega(n)}=\prod\limits_{p|n}(-p) 9.dnμ(d)σ(d)=(1)ω(n)=pn(p)

10. ∑ d ≤ x μ ( d ) ⌊ x d ⌋ = 1 10.\sum\limits_{d≤x}\mu(d)⌊\frac{x}{d}⌋=1 10.dxμ(d)dx=1

11. ∀    m ≥ 1 , ∃    p ,   s t    m < p ≤ 2 m   即   π ( 2 m ) − π ( m ) ≥ 1     B e t r a n d 假 设 11.\forall~~m\geq1,\exists~~p ,~st~~m<p\le 2m~即~\pi(2m)-\pi(m)\ge1~~~ Betrand假设 11.  m1,  p, st  mp2m  π(2m)π(m)1   Betrand

12. ∑ d ∣ n Λ ( d ) = ln ⁡ n 12.\sum\limits_{d|n}\Lambda(d)=\ln n 12.dnΛ(d)=lnn

13. x p − 1 − 1 ≡ ( x − 1 ) . . . ( x − p − 1 )    ( m o d   p ) 13.x^{p-1}-1≡(x-1)...(x-p-1)~~(mod~p) 13.xp11(x1)...(xp1)  (mod p)

14. ( p − 1 ) ! 1 + ( p − 1 ) ! 2 + . . . + ( p − 1 ) ! p − 1 + ≡ 0    ( m o d   p 2 ) 14.\frac{(p-1)!}{1}+\frac{(p-1)!}{2}+...+\frac{(p-1)!}{p-1}+≡0~~(mod~p^2) 14.1(p1)!+2(p1)!+...+p1(p1)!+0  (mod p2)

15. ∑ d ∣ n μ 2 ( d ) φ ( d ) = n φ ( n ) 15.\sum\limits_{d|n}\frac{\mu^2(d)}{\varphi(d)}=\frac{n}{\varphi(n)} 15.dnφ(d)μ2(d)=φ(n)n

I ( n ) = ∑ d ∣ n μ ( d ) I(n)=\sum\limits_{d|n}\mu(d) I(n)=dnμ(d)

莫比乌斯反演相关公式

F ( n ) = ∑ d ∣ n f ( d )          ⟹          f ( n ) = ∑ d ∣ n μ ( d ) F ( ⌊ n d ⌋ ) F(n)=\sum\limits_{d|n}f(d)~~~~~~~~\Longrightarrow~~~~~~~~f(n)=\sum\limits_{d|n}\mu(d)F(⌊\frac{n}{d}⌋) F(n)=dnf(d)                f(n)=dnμ(d)F(dn)
                                     ⟹          f ( n ) = ∑ d ∣ n μ ( ⌊ n d ⌋ ) F ( d ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Longrightarrow~~~~~~~~f(n)=\sum\limits_{d|n}\mu(⌊\frac{n}{d}⌋)F(d)                                             f(n)=dnμ(dn)F(d)

F ( n )   ∣    τ ( n )      σ ( n )        n         ⌊ 1 n ⌋        φ ( n ) n     Λ ( n )     ∣ F(n)~|~~\tau(n)~~~~\sigma(n)~~~~~~n~~~~~~~⌊\frac{1}{n}⌋~~~~~~\frac{\varphi(n)}{n}~~~\Lambda(n)~~~| F(n)   τ(n)    σ(n)      n       n1      nφ(n)   Λ(n)   
f ( n )    ∣     1            n         φ ( n )      μ ( n )       μ ( n ) n     ln ⁡ n      ∣ f(n)~~|~~~1~~~~~~~~~~n~~~~~~~\varphi(n)~~~~\mu(n)~~~~~\frac{\mu(n)}{n}~~~\ln n~~~~| f(n)     1          n       φ(n)    μ(n)     nμ(n)   lnn    

1. φ ( n ) = ∑ d ∣ n μ ( d ) ∗ ⌊ n d ⌋ 1.\varphi(n)=\sum\limits_{d|n}\mu(d)*⌊\frac{n}{d}⌋ 1.φ(n)=dnμ(d)dn

2. ∑ d 2 ∣ n μ ( d ) = u 2 ( n ) = ∣ μ ( n ) ∣ 2.\sum\limits_{d^2|n}\mu(d)=u^2(n)=|\mu(n)| 2.d2nμ(d)=u2(n)=μ(n)

3. ∑ d ∣ n μ 2 ( d ) φ ( d ) = n φ ( n ) 3.\sum\limits_{d|n}\frac{\mu^2(d)}{\varphi(d)}=\frac{n}{\varphi(n)} 3.dnφ(d)μ2(d)=φ(n)n

4. g c d ( i , j ) = ∑ d ∣ i , d ∣ j φ ( d ) 4.gcd(i,j)=\sum\limits_{d|i,d|j}\varphi(d) 4.gcd(i,j)=di,djφ(d)

交换运算顺序

1. ∏ i = 1 n ( a i ∗ b i ) = ∏ i = 1 n a i ∗ ∏ i = 1 n b i 1.\prod\limits_{i=1}^{n}(a_i * b_i)=\prod\limits_{i=1}^{n}a_i*\prod\limits_{i=1}^{n}b_i 1.i=1n(aibi)=i=1naii=1nbi

2. ∏ i = 1 n k ∗ a i = k n ∗ ∏ i = 1 n a i 2.\prod\limits_{i=1}^{n}k*a_i=k^n*\prod\limits_{i=1}^{n}a_i 2.i=1nkai=kni=1nai

3. ∑ i = 1 n ( a i + b i ) = ∑ i = 1 n a i + ∑ i = 1 n b i 3.\sum\limits_{i=1}^{n}(a_i + b_i)=\sum\limits_{i=1}^{n}a_i+\sum\limits_{i=1}^{n}b_i 3.i=1n(ai+bi)=i=1nai+i=1nbi

4. ∑ i = 1 n k ∗ a i = k ∗ ∑ i = 1 n a i 4.\sum\limits_{i=1}^{n}k*a_i=k*\sum\limits_{i=1}^{n}a_i 4.i=1nkai=ki=1nai

一些结论 ( n < m ) (n(n<m)

∑ d ∣ n μ ( d ) d = φ ( n ) n \sum_{d|n}\frac{\mu(d)}{d}=\frac{\varphi(n)}{n} dndμ(d)=nφ(n)
1. ∑ i = 1 n l c m ( i , n ) = n 2 ( ∑ d ∣ n d φ ( d ) + 1 ) = n ∑ d ∣ n ∑ i = 1 d i [ g c d ( i , d ) = = 1 ] 1.\sum\limits_{i=1}^{n}lcm(i,n)=\frac{n}{2}(\sum\limits_{d|n}d\varphi(d)+1)=n\sum\limits_{d|n}\sum\limits_{i=1}^{d}i[gcd(i,d)==1] 1.i=1nlcm(i,n)=2n(dndφ(d)+1)=ndni=1di[gcd(i,d)==1]

2. ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] = ∑ d = 1 n / x μ ( d ) ⌊ n d x ⌋ ⌊ m d x ⌋ = 2 ∑ d = 1 n / x φ ( n x ) − 1 2.\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==x]=\sum\limits_{d=1}^{n/x}\mu(d)⌊\frac{n}{dx}⌋⌊\frac{m}{dx}⌋=2\sum\limits_{d=1}^{n/x}\varphi(\frac{n}{x})-1 2.i=1nj=1m[gcd(i,j)==x]=d=1n/xμ(d)dxndxm=2d=1n/xφ(xn)1

3. ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = ∑ d = 1 n φ ( d ) ⌊ n d ⌋ ⌊ m d ⌋ = ∑ x = 1 n ∑ d = 1 n / x μ ( d ) ⌊ n d x ⌋ ⌊ m d x ⌋ 3.\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}gcd(i,j)=\sum\limits_{d=1}^{n}\varphi(d)⌊\frac{n}{d}⌋⌊\frac{m}{d}⌋=\sum\limits_{x=1}^{n}\sum\limits_{d=1}^{n/x}\mu(d)⌊\frac{n}{dx}⌋⌊\frac{m}{dx}⌋ 3.i=1nj=1mgcd(i,j)=d=1nφ(d)dndm=x=1nd=1n/xμ(d)dxndxm

4. ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ d = 1 n d ∑ d ′ = 1 n / d d ′ 2 μ ( d ′ ) ( ∑ i = 1 n / d ′ d i ) ( ∑ j = 1 m / d ′ d j ) 4.\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)=\sum\limits_{d=1}^{n}d\sum\limits_{d'=1}^{n/d}d'^2\mu(d')(\sum\limits_{i=1}^{n/d'd}i)(\sum\limits_{j=1}^{m/d'd}j) 4.i=1nj=1mlcm(i,j)=d=1ndd=1n/dd2μ(d)(i=1n/ddi)(j=1m/ddj)

5. ∏ i = 1 n ∏ j = 1 m g c d ( i , j ) = ∏ d = 1 n d ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = d ] 5.\prod\limits_{i=1}^{n}\prod\limits_{j=1}^{m}gcd(i,j)=\prod\limits_{d=1}^{n}d^{\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==d]} 5.i=1nj=1mgcd(i,j)=d=1ndi=1nj=1m[gcd(i,j)==d]

6. ∑ i = 1 n g c d ( i , n ) = ∑ d ∣ n n d φ ( d )        ( E u l e r 反 演 ) 6.\sum\limits_{i=1}^{n}gcd(i,n)=\sum\limits_{d|n}\frac{n}{d}\varphi(d)~~~~~~(Euler反演) 6.i=1ngcd(i,n)=dndnφ(d)      (Euler)

7. ∑ i = 1 n ∑ j = 1 n i j = ( n ( n + 1 ) 2 ) 2 = ∑ i = 1 n i 3 7.\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij=(\frac{n(n+1)}{2})^{2}=\sum\limits_{i=1}^{n}i^3 7.i=1nj=1nij=(2n(n+1))2=i=1ni3

8. ∏ i = 1 n ∏ j = 1 n i j = ( n ! ) 2 n 8.\prod\limits_{i=1}^{n}\prod\limits_{j=1}^{n}ij=(n!)^{2n} 8.i=1nj=1nij=(n!)2n

9. ∑ i = 1 n ∑ j = 1 n i j [ g c d ( i , j ) = = 1 ] = ∑ i = 1 n i 2 φ ( i ) 9.\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[gcd(i,j)==1]=\sum\limits_{i=1}^{n}i^2\varphi(i) 9.i=1nj=1nij[gcd(i,j)==1]=i=1ni2φ(i)

10. ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 n i j ∗ i d ( g c d ( i , j ) ) = ∑ i = 1 n ∑ j = 1 n i j ∑ d ∣ i , j ∣ i φ ( d ) 10.\sum\limits_{i=1}^n\sum\limits_{j=1}^nijgcd(i,j)=\sum\limits_{i=1}^n\sum\limits_{j=1}^nij*id(gcd(i,j))=\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|i,j|i}\varphi(d) 10.i=1nj=1nijgcd(i,j)=i=1nj=1nijid(gcd(i,j))=i=1nj=1nijdi,jiφ(d)

11. φ ( i j ) = φ ( i ) φ ( j ) g c d ( i , j ) φ ( g c d ( i , j ) ) 11.\varphi(ij)=\frac{\varphi(i)\varphi(j)gcd(i,j)}{\varphi(gcd(i,j))} 11.φ(ij)=φ(gcd(i,j))φ(i)φ(j)gcd(i,j)

你可能感兴趣的:(数学,莫比乌斯反演)