离散余弦变换和离散傅里叶变换

D C T ( 离 散 余 弦 变 换 ) : DCT(离散余弦变换): DCT

X [ u , m ] = ∑ u = 0 N − 1 ∑ m = 0 N − 1 x [ u , m ] ∗ c [ u , m ] X[u,m]=\sum\limits_{u=0}^{N-1}\sum\limits_{m=0}^{N-1}x[u,m]*c[u,m] X[u,m]=u=0N1m=0N1x[u,m]c[u,m]

其 中 , 其中,

c [ u , m ] = { 1 N , u = 0 2 N c o s ( ( 2 ∗ m + 1 ) u π 2 N ) , u ! = 0 c[u,m]=\left\{\begin{matrix}\sqrt{\frac1N},u=0\\\sqrt{\frac2N}cos(\frac{(2*m+1)u\pi}{2N}),u!=0\end{matrix}\right. c[u,m]=N1 u=0N2 cos(2N(2m+1)uπ),u!=0

D F T ( 离 散 傅 里 叶 变 换 ) DFT(离散傅里叶变换) DFT

F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( x u M + y v N ) M N F(u,v)=\frac{\sum\limits_{x=0}^{M-1}\sum\limits_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{xu}M+\frac{yv}N)}}{\sqrt{MN}} F(u,v)=MN x=0M1y=0N1f(x,y)ej2π(Mxu+Nyv)

你可能感兴趣的:(数字图像处理)