- 深度学习超参数优化(HPO)终极指南:从入门到前沿
摘要:在深度学习的实践中,模型性能的好坏不仅取决于算法和数据,更在一半程度上取决于超参数的精妙设置。本文是一篇关于超参数优化(HyperparameterOptimization,HPO)的综合性指南,旨在带领读者从最基础的概念出发,系统性地梳理从经典到前沿的各类优化方法,并最终落地于实用策略和现代工具。无论您是初学者还是资深从业者,都能从中获得宝贵的见解。第一部分:夯实基础——HPO的核心概念1
- 【C++特殊工具与技术】固有的不可移植的特性(3)::extern“C“
在软件开发中,混合编程是常见需求:C++调用C语言编写的底层库(如Linux系统调用)、C程序调用C++实现的算法模块,甚至C++与Ada、Fortran等其他语言交互。但不同语言在函数命名规则和调用约定上的差异,会导致链接阶段出现“无法解析的外部符号”错误。目录一、命名修饰与链接问题:CvsC++1.1C++的命名修饰机制1.2C语言的“无修饰”命名1.3链接失败的典型场景二、extern"C"
- 打卡信奥刷题(1697)用C++实现信奥 P8244 [COCI 2013/2014 #3] KOLINJE
Loge编程生活
C++c++算法开发语言青少年编程数据结构
P8244[COCI2013/2014#3]KOLINJE题目描述在一年一度的生猪屠宰会上,屠夫Bajs正在进行活动的最后一个环节——将自己那条屡获殊荣的火腿拿出一部分,分给参加活动的所有人。今年的生猪屠宰会一共有nnn个人参加,其中第iii个人目前已经吃了aia_iai千克火腿。Bajs将自己的火腿按照b1:b2:⋯:bnb_1:b_2:\cdots:b_nb1:b2:⋯:bn的比例分给所有人,
- 打卡信奥刷题(1150)用C++实现信奥 P2085 最小函数值
P2085最小函数值题目描述有nnn个函数,分别为F1,F2,…,FnF_1,F_2,\dots,F_nF1,F2,…,Fn。定义Fi(x)=Aix2+Bix+Ci(x∈N∗)F_i(x)=A_ix^2+B_ix+C_i(x\in\mathbbN*)Fi(x)=Aix2+Bix+Ci(x∈N∗)。给定这些AiA_iAi、BiB_iBi和CiC_iCi,请求出所有函数的所有函数值中最小的mmm个(如
- SQLite数据库文件损坏的可能几种情况(一)
界忆
人工智能数据库SQLite数据库sqlitec++
返回:SQLite—系列文章目录上一篇:SQLiteC/C++接口详细介绍sqlite3_stmt类(十三)下一篇:SQLite使用的临时文件(二)概述SQLite数据库具有很强的抗损坏能力。如果应用程序崩溃,或操作系统崩溃,甚至电源故障发生在事务中间,部分写入的事务应在下次自动回滚将访问数据库文件。恢复过程已完全完成自动,不需要用户采取任何行动或应用程序。尽管SQLite可以抵抗数据库损坏,但它
- boost::math模块使用 agm 以高精度计算 lemniscate 常量
源代码大师
Boost完整实战教程
boost::math模块使用agm以高精度计算lemniscate常量实现功能C++实现代码实现功能boost::math模块使用agm以高精度计算lemniscate常量C++实现代码#include#include#include
- Objective-C实现2 个数字之间的算术几何平均值算法(附完整源码)
源代码大师
objective-c算法开发语言
Objective-C实现2个数字之间的算术几何平均值算法算术几何平均值(Arithmetic-GeometricMean,AGM)是一个在数值分析中非常重要的概念,尤其是在计算平方根和其他数学运算时。算术几何平均值是两个正数的算术平均值和几何平均值的迭代过程,直到两个值收敛为止。以下是一个用Objective-C实现的算术几何平均值算法的完整源码:#importdoublearithmeticG
- 能设计算法的,终究是极少数人
奇妙的奇
图片发自App听吴伯凡的《认知方法论》,对“算法”有了全新的认识。世界上最早的程序员比第一台计算机要早一百多年,19世纪初期,法国人雅卡尔,就发明了穿孔纸带控制的纺织机,准确说是纺织提花机,这就是后来计算机用的纸带打孔机的原型,这就是算法。更早,1796年,瑞士人法布尔发明了八音盒。在一个轮子上做一些凸起,随着轮子转动,就能够驱使八音盒奏出制定的乐曲。再早呢?可以往前推演很多。所谓的编制算法,就是
- QT窗口(5)-对话框
Mr_Xuhhh
qtjava数据库系统架构c++开发语言redis
QT窗口(5)-对话框基本概念用户与用户间实现短平快的操作Qt中使用QDialog类表示对话框和QWidget区别不大实际开发中,更多在代码中创建额外的类,让额外的类继承来自QDialog主窗口一般不会作为对话框,主窗口可以生成其他对话框代码如下:voidDialog::on_pushButton_clicked(){QDialog*dialog=newQDialog(this);dialog->
- 十大经典排序算法——冒泡排序
—————————————————
算法排序排序算法算法
冒泡排序(BubbleSort)是一种简单的排序算法,它通过重复地遍历待排序的列表,比较相邻的元素并交换它们的位置来实现排序。该算法的名称来源于较小的元素会像"气泡"一样逐渐"浮"到列表的顶端。一、算法步骤比较相邻元素:从列表的第一个元素开始,比较相邻的两个元素。交换位置:如果前一个元素比后一个元素大,则交换它们的位置。重复遍历:对列表中的每一对相邻元素重复上述步骤,直到列表的末尾。这样,最大的元
- VUE解决Error: error:0308010C:digital envelope routines::unsupported的四种解决方案
问题描述:报错:Error:error:0308010C:digitalenveloperoutines::unsupported报错原因:主要是因为nodeJsV17版本发布了OpenSSL3.0对算法和秘钥大小增加了更为严格的限制,nodeJsv17之前版本没影响,但V17和之后版本会出现这个错误。我的node版本是v18+报错详细信息:rror:error:0308010C:digitale
- AI 人工智能与 Copilot 的融合发展策略
AI天才研究院
AI人工智能与大数据人工智能copilotai
AI人工智能与Copilot的融合发展策略关键词:人工智能、Copilot、代码生成、人机协作、机器学习、自然语言处理、软件开发摘要:本文探讨了人工智能与Copilot技术的融合发展策略。我们将从技术原理、实现方法、应用场景等多个维度深入分析,提出一套完整的融合框架和发展路径。文章首先介绍背景和核心概念,然后详细讲解关键技术,包括自然语言处理、代码生成算法等,接着通过实际案例展示应用效果,最后讨论
- AI 人工智能与 Copilot 碰撞出的火花
AI天才研究院
AI大模型企业级应用开发实战人工智能copilotai
AI人工智能与Copilot碰撞出的火花关键词:AI人工智能、Copilot、代码辅助、智能编程、人机协作、软件开发、技术创新摘要:本文深入探讨了AI人工智能与Copilot碰撞所产生的一系列效应。首先介绍了相关背景,包括目的、预期读者、文档结构和术语表。接着阐述了核心概念与联系,展示了其原理和架构的示意图及流程图。详细讲解了核心算法原理和具体操作步骤,并通过Python代码进行说明。同时给出了数
- 硬件预取的几个问题 1
1.硬件预取的定义和目标是什么?答案:硬件预取是CPU在程序执行前自动预测并加载可能使用的数据到缓存中的技术,目标是减少缓存未命中带来的延迟,提升指令吞吐量。2.硬件预取与软件预取的核心区别?答案:硬件预取由CPU内部逻辑自动触发,透明且通用;软件预取需程序员显式插入指令(如prefetch),可针对特定场景优化,但依赖代码适配。3.预取算法的主要分类?答案:分为规则驱动型(如顺序、步长预取)和机
- Zuul的用法——限流
HmilyMing
因为所有的对外提供的接口都是要经过Zuul的转发,所以在这里的Pre过滤器里面做限流是最好的。常用的限流算法有1.计数器法,可以看做是低精度的滑动窗口算法2.滑动窗口,需要更多的存储空间3.漏桶算法,4.令牌桶算法,运行流量在一定程度上的突发,实践简单,对用户更友好,采用得更多。我这里采用的就是令牌桶算法,其原理如下令牌桶算法guava里面有令牌桶算法的实现在浏览器多刷几次就会被限流给禁止访问了代
- Java:实现朴素模式匹配算法(附带源码)
Katie。
Java算法完整教程算法javapython
1.项目背景详细介绍在文本处理、信息检索和生物序列分析等领域,“字符串模式匹配”是最基础也是最核心的操作之一。朴素模式匹配(NaiveStringMatching)算法,作为最直观的实现方式,通过逐个字符对比,查找模式串在目标文本中出现的位置。虽然现代应用中普遍采用更高效的KMP、Boyer–Moore、Sunday算法等,但理解并掌握朴素算法有助于:打牢基础:从最简单的实现入手,帮助初学者理解匹
- Qt/C++音视频开发22-通用GPU显示
feiyangqingyun
Qt/C++音视频开发Qt视频监控Qt音视频Qt硬解码
一、前言采用GPU来绘制实时视频一直以来都是个难点,如果是安防行业的做视频监控开发这块的人员,这个坎必须迈过去,本人一直从事的是安防行业的电子围栏这个相当小众的细分市场的开发,视频监控这块仅仅是周边技术玩一玩探讨一下,关于GPU绘制这块着实走了不少的弯路。之前用ffmpeg解码的时候,已经做了硬解码的处理,比如支持qsv、dxva2、d3d11va等方式进行硬解码处理,但是当时解码出来以后,还是重
- 网易云音乐会员优惠大揭秘,网友:太值了!
氧惠佣金真的高
在数字音乐时代,拥有一款高品质的音乐APP是音乐爱好者的必备之选。作为中国音乐市场的佼佼者,网易云音乐凭借其丰富的曲库、出色的推荐算法以及浓厚的社区氛围,吸引了大量用户。近日,网易云音乐推出了一系列会员优惠活动,让我们一起来了解一下吧!大家好,我是氧惠联合创始人七言导师,给大家推荐一款省钱更加赚钱的app——氧惠。氧惠是与以往完全不同的抖客+淘客app!2023全新模式,我的直推也会放到你下面。主
- 微算法科技基于格密码的量子加密技术,融入LSQb算法的信息隐藏与传输过程中,实现抗量子攻击策略强化
MicroTech2025
量子计算区块链
随着量子计算技术的发展,传统加密算法面临被量子计算机破解的风险,LSQb算法也需考虑应对未来可能的量子攻击。微算法科技基于格密码的量子加密技术,融入LSQb算法的信息隐藏与传输过程中,实现抗量子攻击策略强化。格密码在面对量子攻击时具有较高的安全性,通过这种融合,能为LSQb算法提供更强大的抗攻击能力,确保信息在复杂的量子计算环境下的安全性。格密码是一种基于数学格结构的密码学方法,具有在量子计算环境
- 微算法科技技术突破:用于前馈神经网络的量子算法技术助力神经网络变革
MicroTech2025
量子计算算法神经网络
随着量子计算和机器学习的迅猛发展,企业界正逐步迈向融合这两大领域的新时代。在这一背景下,微算法科技(NASDAQ:MLGO)成功研发出一套用于前馈神经网络的量子算法,突破了传统神经网络在训练和评估中的性能瓶颈。这一创新性的量子算法以经典的前馈和反向传播算法为基础,借助量子计算的强大算力,极大提升了网络训练和评估效率,并带来了对过拟合的天然抗性。前馈神经网络是深度学习的核心架构,广泛应用于图像分类、
- 微算法科技研究量子视觉计算,利用量子力学原理提升传统计算机视觉任务的性能
计算机视觉,作为人工智能领域的一个重要分支,致力于模拟人类视觉系统对图像或视频等视觉数据的理解与分析能力。它涵盖了图像识别、目标检测、图像分割等一系列复杂任务,广泛应用于自动驾驶、医疗影像分析、安防监控等多个领域。然而,随着数据规模的不断膨胀和任务复杂度的日益提升,传统计算机视觉算法在处理大规模、高维度数据时遇到了性能瓶颈。微算法科技(NASDAQ:MLGO)研究量子视觉计算,探索量子计算与经典卷
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- Kafka 时间轮深度解析:如何O(1)处理定时任务
lifallen
KafkaJavakafkalinq分布式java数据库数据结构apache
TimingWheel(时间轮)TimingWheel是一种高效的、用于实现大量定时任务调度的算法结构。相比于传统的基于优先队列(PriorityQueue)的定时器(其添加/删除操作的时间复杂度为O(logn)),时间轮可以实现近乎O(1)的添加和删除操作,这在需要管理成千上万个定时任务的场景下(例如Kafka中的请求超时、延迟操作等)具有巨大的性能优势。可以把一个TimingWheel想象成一
- 【算法训练营Day12】二叉树part2
十八岁讨厌编程
算法训练营算法
文章目录翻转二叉树对称二叉树二叉树的最大深度二叉树的最小深度翻转二叉树题目链接:226.翻转二叉树解题逻辑:翻转二叉树也就是将所有非叶节点的左右孩子相互交换,那么我们就可以采用层序遍历判断非叶节点进行翻转:初始化一个辅助队列将根节点添加到队列中去弹出队头元素如果该元素的两个子节点均不为null则翻转两个子节点然后将子节点入队如此循环往复直到队列为空代码如下:classSolution{public
- 高通camera结构(第五天)
一、摄像头的结构和工作原理镜头用来拍摄景物,拍摄的图片在传感器上将光信号转换成了电信号,电信号经过AD转换器(模数转换器)转换成了数字信号,数字信号经过DSP(数字信号处理器)进行加工处理,再被送到电脑中进行处理,最终转换成了手机屏幕上我们可以看到的图像。数字信号处理器芯片(DSP)功能:主要是通过一系列数学的算法运算,对数字图像信号进行优化处理,并把处理过的信号通过USB等接口传到PC等设备。D
- 推荐算法召回:架构理解
Jay Kay
c++推荐算法推荐算法架构算法
一、召回服务的定位与挑战召回层是推荐系统的第一道漏斗,负责从亿级候选集中筛选出千级别的相关项,其效果直接决定推荐效果的天花板。核心挑战包括:低延迟约束:需在50ms内完成海量候选检索;高召回率要求:98%的召回率需覆盖用户多样化兴趣;数据漂移应对:实时用户行为分布变化需动态适应;误杀控制:避免优质内容被过度过滤引发用户投诉。⚙️二、召回服务核心架构1.多路召回并行召回策略实现方式适用场景规则召回基
- A*算法详解
A*算法详解一、A*算法基础概念1.1算法定位1.2核心评估函数1.3关键数据结构二、A*算法的核心步骤三、启发函数设计3.1网格地图中的启发函数3.2启发函数的选择原则三、Java代码实现四、启发函数的设计与优化4.1启发函数的可采纳性4.2启发函数的效率影响4.3常见启发函数对比五、A*算法的应用场景与拓展5.1典型应用5.2算法拓展六、A*算法的优缺点优点缺点从游戏中的角色寻路到机器人导航,
- 分层图最短路径算法详解
GG不是gg
数据结构与算法分析#算法分析与设计图搜索算法
分层图最短路径算法详解一、分层图算法的核心思想1.1问题引入:带约束的最短路径1.2分层图的核心思路二、分层图的构建方法2.1分层图的结构定义2.2构建步骤(以“最多k次边权改为0”为例)三、分层图最短路径的求解3.1算法步骤3.2Java代码实现(以Dijkstra为例)四、分层图算法的关键细节4.1状态表示与空间优化4.2边的处理4.3复杂度分析五、典型应用场景5.1带次数约束的路径优化5.2
- 信息学奥赛-一本通-第二部分 基础算法 --> 第五章 搜索与回溯算法
攻城丶狮
C++比赛信息算法深度优先图论c++青少年编程
1317:【例5.2】组合的输出【题目描述】排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r≤n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数。现要求你用递归的方法输出所有组合。例如n=5,r=3,所有组合为:123124125134135145234235245345【题目分析】1.搜索函数参数:上一次搜索的数字i(i(n)>=i(n-1))
- C++ Primer(第5版)- Chapter 7. Classes -003
skylijf
C++开发语言笔记c++
7.1.1.DesigningtheSales_dataClassUltimately,wewantSales_datatosupportthesamesetofoperationsastheSales_itemclass.TheSales_itemclasshadonememberfunction(§1.5.2,p.23),namedisbn,andsupportedthe+,=,+=,>ope
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D