- 生命3.0时代,面对人工智能时代的到来,我们可以做些什么
笃定的沙丁鱼
生命的定义生命的定义有很多,最为人所熟知的是在生物学上的定义,即生命是蛋白质存在的一种形式。但是,这种定义可能不太适用于未来的智能机器和外星文明,我们不能将我们对未来生命的思考局限在过去遇到过的物种,所以需要将生命定义得更广阔一些:生命是一个能保持自身复杂性并能进行复制的过程。复制的对象并不是由原子组成的物质,而是能阐明原子是如何排列的信息,这种信息由比特组成。换句话说:我们可以将生命看作一种自我
- 不正规不靠谱:假摩根士丹利内部群推荐绿色低碳减排平台骗局揭露!送一万体验资金做慈善全是假的!
易星辰分享普法
关于曝光网上摩根士丹利何晓斌宝丰能源节能减排在炒股群推荐智慧农业中粮仓平台骗局的文章,其内容主要揭示了近期频发的一种投资诈骗手段。以下是该骗局的主要特点和步骤:为什么明明跟老师对过视频,确认是本人,怎么还会被骗了?你有没有想过一个名人大咖怎么会有时间给你们一对一视频,其次我来给大家揭露一下,这个套路AI换脸骗局是一种利用人工智能技术,通过替换视频中的人脸来伪造身份或进行诈骗的行为。你的账户“余额”
- 假冒朱民!通达OA社科院朱民ST-balance项目就是假的,被骗亏损真相揭秘,亲身亏损经历
正义青天
通达OA社科院朱民ST-balance项目不正规——杀猪盘不能提现投票骗局曝光!随着互联网的普及,数字经济蓬勃发展,各种线上平台如雨后春笋般涌现。然而,在这些看似繁荣的平台中,不乏一些黑平台,它们以欺诈手段骗取用户的财产,给人们的财产安全带来严重威胁!因此,我们有必要提高警惕,防范黑平台诈骗。针对网上素未谋面的牛散大咖,经济学家等推荐网上投资理财、数字经济,数字体育市场,人工智能项目,数字低碳,慈
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 普通人想利用AI变现,这5个赛道不能错过!
浮沉导师
随着人工智能技术的迅猛发展,越来越多的普通人开始关注如何利用AI实现变现。AI不仅改变了我们的工作方式,也创造了众多赚钱的机会。本文将介绍五个值得关注的AI赛道,帮助你抓住这些机会,实现收入增长。【高省】APP网购优惠券免费领,分享还能赚钱。【高省】是一个自用省钱佣金高,分享推广赚钱多的平台。佣金更高,模式更好,终端用户不流失。0投资,稳定可靠,百度有几百万篇报道,期待你的加入。应用市场下载【高省
- Secs/Gem第十二讲(基于secs4net项目的ChatGpt介绍)
好,那我们进入最关键的一讲——第十二讲:完整事件通知流程全景图——CEID触发到主机接收的全过程关键词:CEID事件上报、S6F11报文、事件触发流程、数据驱动机制、ReportDispatch、主机解析流程本讲目标你将彻底理解:设备是如何触发一个事件上报的?报文(S6F11)结构是怎么设计的?主机是怎么解析报文、提取变量、派发处理?报文中包含的信息是怎么匹配你之前定义的CEID/RPTID/VI
- 关于 SECS4NET 专栏的几点说明(内附资源)
好学近乎知o
secs/gemsecs4net
关于SECS4NET专栏的几点说明根据很多小伙伴在评论区的留言,我总结了几个反馈点:✅常见问题反馈部分章节讲解存在个别错误关于资源来源、项目版本的问题更新速度偏慢,期待能加快节奏简单说明一下:我是一个没有感情的复制粘贴机器,发布这些作品最初只是为了自己闲来学习、顺便看着玩。起初我以为这种纯纯的复制粘贴内容,甚至连开头和结尾都带着ChatGPT的沟通痕迹,肯定不会有人感兴趣。但没想到,发布之后阅读量
- Secs/Gem第二讲 (基于secs4net项目的ChatGpt介绍)
好的,我们正式进入:第二讲:深入SECS4NET项目结构——主机程序是怎么搭起来的?关键词:项目结构、类图、通信类、事件处理、连接生命周期、异步机制本讲目的我们从源码入手,一步步搞懂:SECS4NET主机(Host)是如何设计通信逻辑的有哪些关键类,类之间的关系是什么通信的生命周期怎么管理怎么实现“接收消息”和“主动发送”的功能如何集成到你自己的EAP或测试程序中你将不再只是“调Sample”,而
- Secs/Gem第一讲(基于secs4net项目的ChatGpt介绍)
好学近乎知o
c#secs/gem
后续内容为基于github上secs4net项目源码的ChatGpt介绍以该项目为主,从零开始介绍讲解secs/gem,更多的以面试口吻讲述形式。主要为个人学习,提升使用第一讲:SECS/GEM协议是个什么东西?第1段:SECS/GEM是谁?它在哪些场合出现?️口述稿(你面试时可以这样说):SECS/GEM协议是半导体行业的通信标准,它解决的是“设备”和“主机系统”之间如何说话、怎么互相理解命令和
- AI人工智能 Agent:金融投资中智能体的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:金融投资中智能体的应用1.背景介绍在金融投资领域,人工智能(AI)技术的应用已经成为一种趋势。随着数据量的爆炸性增长和计算能力的提升,AI技术在金融市场中的应用变得越来越广泛和深入。智能体(Agent)作为AI技术的重要组成部分,能够在金融投资中发挥重要作用。智能体可以通过学习和适应市场环境,自动执行交易策略,优化投资组合,甚至预测市场趋势。2.核心概念与联系2.1智能体(
- 对话谷歌前 CEO Eric Schmidt:数字超智能将在十年内到来,AI 将创造更多更高薪的工作
AI科技大本营
人工智能
责编|王启隆出品|CSDN(ID:CSDNnews)投稿或寻求报道|
[email protected]科技巨擘、谷歌前CEOEricSchmidt最近做客PeterDiamandis的Moonshots播客,与主持人PeterDiamandis及DaveLondon展开了一场关于人工智能未来的深度对话。全世界都在为AI的飞速发展感到兴奋又焦虑时,这位曾经执掌谷歌帝国长达十年、亲眼见证并推动了这场技术
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 解决pip指令超时问题
好学近乎知o
pippython
用pip指令,在安装Django3.2时报错,询问ChatGpt后得到的解决方案pip下载超时——是当前网络连接到PyPI官方源太慢或不稳定,甚至可能连不上了,而pip默认的超时时间又太短,就导致了中途失败:ReadTimeoutError:HTTPSConnectionPool(host='files.pythonhosted.org',port=443):Readtimedout.解决方案:换
- 格灵深瞳视觉算法面试30问全景精解
机 _ 长
算法面试职场和发展
格灵深瞳视觉算法面试30问全景精解——AI感知×智能安防×场景创新:格灵深瞳视觉算法面试核心考点全览前言格灵深瞳(GREATVISION)作为国内领先的人工智能与计算机视觉企业,专注于智慧安防、智能交通、智慧零售等领域,推动视觉算法在大规模城市级场景的落地。格灵深瞳视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在复杂场景下的创新能力与工程实践。本文精选30个高质量面试问题,涵盖基
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 蔚来汽车视觉算法面试30问全景精解
蔚来汽车视觉算法面试30问全景精解——智能电动×高阶辅助驾驶×视觉创新:蔚来汽车视觉算法面试核心考点全览前言蔚来汽车作为全球领先的智能电动汽车品牌,致力于通过AI与高阶辅助驾驶技术推动智能出行的未来。蔚来视觉算法团队专注于自动驾驶感知、智能座舱、车路协同、3D重建等领域,强调算法的工程落地、系统安全与创新突破。蔚来视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在自动驾驶、智能感知
- 今日播报!庆衍书院郭庆旺被骗黑幕曝光,KSD2.0光伏市场不能出金不要再次踏入!
法律咨询维权
社交平台有这样一种群,群里都是“理财专家”“炒股大神”“操盘高手”,不仅每天免费授课、推荐牛股,还有助理“一对一”指导具体操作。针对网上素未谋面的牛散大咖,经济学家等推荐网上投资理财、数字经济,数字体育市场,人工智能项目,数字低碳,慈善投票网站买数字的等等都是骗局,广大市民对此要提高警惕,遇到此类情况一概不要相信。咨询顾问:182--71402640(电微同号)数字经济数字体育数字农业慈善投票大赛
- 【转】Unity3.5是一次较大的更新.它包含的新功能和改进会让你爱不释手.
SODASTUDIO
Unity3D
Shuriken粒子系统内建寻路系统升级遮挡裁切和增加LOD系统谷歌Chrome浏览器的NativeClient支持线性空间照明和HDR主要的新功能AdobeFlash:现在版本支持AdobeSWF格式的Flash输出(预览版).有关Flash预览版相关问题见:http://unity3d.com/unity/publishing/flash新的粒子系统-"Shuriken".可以手动控制时间线来
- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- AI人才实在太抢手!顶级科学家年薪超7000万:中高级也能过千万
程序员 超超
人工智能transformer深度学习javaspringbootai大模型
快科技7月2日消息,据媒体报道,激烈的人工智能人才争夺战,导致一些顶尖资深研究科学家的年薪超过1000万美元(约7167万元人民币)。而典型的薪资方案则处于300万至700万美元区间,相较于2022年,这一数字实现了约50%的增长。薪酬追踪网站Levels的统计数据显示,Meta给予AI工程师的薪酬范围为18.6万至320万美元,OpenAI则在21.2万至250万美元之间;若以薪酬中位数来衡量,
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 量子生成对抗网络:量子计算与生成模型的融合革命
牧之112
量子计算生成对抗网络人工智能
引言:当生成对抗网络遇上量子计算在人工智能与量子计算双重浪潮的交汇处,量子生成对抗网络(QuantumGenerativeAdversarialNetworks,QGAN)正成为突破经典算力瓶颈的关键技术。传统生成对抗网络(GAN)在图像生成、数据增强等领域已取得辉煌成就,但其参数规模与计算复杂度随着数据维度呈指数级增长。量子计算的叠加性、纠缠性和并行性,为解决这一矛盾提供了全新思路。2025年,
- OpenAI模型可解释性工具:理解AI的黑箱
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能百度ai
OpenAI模型可解释性工具:理解AI的黑箱关键词:OpenAI模型、可解释性工具、AI黑箱、模型理解、人工智能摘要:本文旨在深入探讨OpenAI模型可解释性工具,帮助大家理解AI这个“黑箱”。首先介绍了研究的背景、目的和预期读者,接着解释了核心概念,包括OpenAI模型、可解释性工具等,阐述了它们之间的关系。通过核心算法原理、数学模型和公式的讲解,让大家明白其内在机制。还给出了项目实战案例,包括
- 骗局套路:卧虎藏隆应天书府隆国强被骗无法提现!讲述背后事实!
正义青天
为什么明明跟老师对过视频,确认是本人,怎么还会被骗了?你有没有想过一个名人大咖怎么会有时间给你们一对一视频,其次我来给大家揭露一下,这个套路AI换脸骗局是一种利用人工智能技术,通过替换视频中的人脸来伪造身份或进行诈骗的行为。你的账户“余额”是真的吗?为什么不能提现呢?其实都是骗子给你的一串数字而已!近期作者接触到了很多投资者被所谓的“隆国强”(骗子假冒)在卧虎藏隆应天书府带单的案例。这些新平台打着
- ChatGPT如何实现文字分类?精选案例和最佳实践
山城程序员
ChatGPT是一种预训练语言模型,通常用于生成自然语言文本。但是,在将其应用于分类任务时,它也可以表现出色。本文将介绍如何使用ChatGPT实现文本分类,并提供实践步骤和示例代码。1.数据准备在进行文本分类之前,您需要选择一个合适的数据集并对其进行清理和预处理。确保您的数据集包含带有标签的文本数据。例如,您可能拥有一些产品评论,并且需要将它们分类为积极或消极。以下是一个示例代码,演示如何加载数据
- 7篇1章7节:机器学习算法解读,与数值预测回归模型构建
MD分析
用R探索医药数据科学机器学习算法回归r语言数据挖掘
机器学习是当今数据分析和人工智能的核心工具之一,其算法广泛应用于分类、回归、排序和推荐等领域。本篇将详细讲解机器学习的四大经典算法类型,并以回归问题为例深入探讨数值预测的关键步骤,包括数据准备、线性回归模型构建、模型预测及误差评估,帮助读者更系统地理解和掌握机器学习的基础知识及实际应用。一、机器学习的算法在数据科学和人工智能的浪潮中,机器学习算法成为了解决各种数据问题的关键工具。机器学习主要处理四
- 假冒振我中华第六届内部操盘群毛振华不正规!未来低碳项目不能提现难友真实经历告诉你!
法律咨询维权
随着互联网的普及和金融科技的发展,越来越多的人开始使用线上平台进行投资、交易等活动。然而,一些不法分子也利用这些平台实施诈骗行为,给投资者带来了巨大的损失。本文将介绍一种常见的骗局——黑平台无法出金,以帮助大家提高警惕性,避免上当受骗。推荐网上投资理财、数字经济、数字体育、人工智能,数字农业慈善投票网站买数字的等等都是,广大市民对此要提高警惕,遇到此类情况一概不要相信。(注明:该文章出现名字为网上
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不