- 本文为365天深度学习训练营 中的学习记录博客
- 原作者:K同学啊 | 接辅导、项目定制
本文将采用pytorch框架创建CNN网络,实现猴痘病识别。讲述实现代码与执行结果,并浅谈涉及知识点。
关键字: torch.utils.data.DataLoader()参数详解,torch.squeeze()与torch.unsqueeze()详解,拔高尝试–更改优化器为Adam,增加dropout层,保存最好的模型
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import time
from pathlib import Path
from PIL import Image
from torchinfo import summary
import torch.nn.functional as F
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
import warnings
warnings.filterwarnings('ignore') # 忽略一些warning内容,无需打印
"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using {} device".format(device))
输出
Using cuda device
'''前期工作-导入数据'''
data_dir = r"D:\DeepLearning\data\monkeypox_recognition"
data_dir = Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
print(classeNames)
输出
['Monkeypox', 'Others']
'''前期工作-可视化数据'''
cloudyPath = Path(data_dir)/"Monkeypox"
image_files = list(p.resolve() for p in cloudyPath.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])
plt.figure(figsize=(10, 6))
for i in range(len(image_files[:12])):
image_file = image_files[i]
ax = plt.subplot(3, 4, i + 1)
img = Image.open(str(image_file))
plt.imshow(img)
plt.axis("off")
# 显示图片
plt.tight_layout()
plt.show()
'''前期工作-图像数据变换'''
total_datadir = data_dir
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)
输出
Dataset ImageFolder
Number of datapoints: 2142
Root location: D:\DeepLearning\data\monkeypox_recognition
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
{'Monkeypox': 0, 'Others': 1}
'''前期工作-划分数据集'''
train_size = int(0.8 * len(total_data)) # train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
test_size = len(total_data) - train_size # test_size表示测试集大小,是总体数据长度减去训练集大小。
# 使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,
# 并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_dataset={}\ntest_dataset={}".format(train_dataset, test_dataset))
print("train_size={}\ntest_size={}".format(train_size, test_size))
输出
train_dataset=
test_dataset=
train_size=1713
test_size=429
'''前期工作-加载数据'''
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
'''前期工作-查看数据'''
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
输出
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64
"""构建CNN网络"""
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2, 2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24 * 50 * 50)
x = self.fc1(x)
return x
model = Network_bn().to(device)
print(model)
summary(model)
输出
Network_bn(
(conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc1): Linear(in_features=60000, out_features=2, bias=True)
)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Network_bn --
├─Conv2d: 1-1 912
├─BatchNorm2d: 1-2 24
├─Conv2d: 1-3 3,612
├─BatchNorm2d: 1-4 24
├─MaxPool2d: 1-5 --
├─Conv2d: 1-6 7,224
├─BatchNorm2d: 1-7 48
├─Conv2d: 1-8 14,424
├─BatchNorm2d: 1-9 48
├─Linear: 1-10 120,002
=================================================================
Total params: 146,318
Trainable params: 146,318
Non-trainable params: 0
=================================================================
"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss() # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate) # 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大
"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)
X, y = X.to(device), y.to(device) # 用于将数据存到显卡
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # 清空过往梯度
loss.backward() # 反向传播,计算当前梯度
optimizer.step() # 根据梯度更新网络参数
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
"""训练模型--正式训练"""
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')
输出
Epoch: 1, duration:7062ms, Train_acc:59.7%, Train_loss:0.679, Test_acc:62.5%,Test_loss:0.651
Epoch: 2, duration:5408ms, Train_acc:68.9%, Train_loss:0.580, Test_acc:66.4%,Test_loss:0.650
Epoch: 3, duration:5328ms, Train_acc:74.2%, Train_loss:0.543, Test_acc:67.8%,Test_loss:0.630
Epoch: 4, duration:5345ms, Train_acc:77.6%, Train_loss:0.493, Test_acc:68.5%,Test_loss:0.575
Epoch: 5, duration:5340ms, Train_acc:77.8%, Train_loss:0.471, Test_acc:74.6%,Test_loss:0.565
Epoch: 6, duration:5295ms, Train_acc:81.8%, Train_loss:0.435, Test_acc:73.2%,Test_loss:0.555
Epoch: 7, duration:5309ms, Train_acc:83.1%, Train_loss:0.418, Test_acc:74.8%,Test_loss:0.517
Epoch: 8, duration:5268ms, Train_acc:85.4%, Train_loss:0.392, Test_acc:76.9%,Test_loss:0.504
Epoch: 9, duration:5395ms, Train_acc:85.8%, Train_loss:0.374, Test_acc:77.6%,Test_loss:0.490
Epoch:10, duration:5346ms, Train_acc:87.9%, Train_loss:0.356, Test_acc:76.0%,Test_loss:0.498
Epoch:11, duration:5297ms, Train_acc:88.3%, Train_loss:0.336, Test_acc:77.6%,Test_loss:0.464
Epoch:12, duration:5291ms, Train_acc:89.6%, Train_loss:0.323, Test_acc:78.1%,Test_loss:0.470
Epoch:13, duration:5259ms, Train_acc:89.7%, Train_loss:0.311, Test_acc:78.6%,Test_loss:0.475
Epoch:14, duration:5343ms, Train_acc:90.3%, Train_loss:0.295, Test_acc:80.0%,Test_loss:0.443
Epoch:15, duration:5363ms, Train_acc:90.5%, Train_loss:0.295, Test_acc:78.1%,Test_loss:0.442
Epoch:16, duration:5305ms, Train_acc:91.2%, Train_loss:0.284, Test_acc:79.5%,Test_loss:0.427
Epoch:17, duration:5279ms, Train_acc:91.5%, Train_loss:0.270, Test_acc:79.5%,Test_loss:0.421
Epoch:18, duration:5356ms, Train_acc:92.8%, Train_loss:0.259, Test_acc:80.7%,Test_loss:0.426
Epoch:19, duration:5284ms, Train_acc:91.9%, Train_loss:0.251, Test_acc:80.2%,Test_loss:0.427
Epoch:20, duration:5274ms, Train_acc:92.6%, Train_loss:0.255, Test_acc:80.4%,Test_loss:0.440
Done
"""训练模型--结果可视化"""
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img) # 展示预测的图片
plt.show()
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_, pred = torch.max(output, 1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
classes = l
ist(total_data.class_to_idx)
# 预测训练集中的某张照片
predict_one_image(image_path=str(Path(data_dir)/"Monkeypox"/"M01_01_00.jpg"),
model=model,
transform=train_transforms,
classes=classes)
输出
预测结果是:Monkeypox
"""保存并加载模型"""
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
torch.utils.data.DataLoader 是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader 构造函数接受多个参数,下面是一些常用的参数及其解释:
dataset
(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。 batch_size
(可选参数):指定每个小批次中包含的样本数。默认值为 1。 shuffle
(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False。 num_workers
(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。 pin_memory
(可选参数):如果设置为 True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False。drop_last
(可选参数):如果设置为 True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False。 timeout
(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。worker_init_fn
(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。torch.squeeze()
对数据的维度进行压缩,去掉维数为1的的维度
函数原型
torch.squeeze(input, dim=None, *, out=None)
关键参数
● input (Tensor):输入Tensor
● dim (int, optional):如果给定,输入将只在这个维度上被压缩
实战案例
>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])
torch.unsqueeze()
对数据维度进行扩充。给指定位置加上维数为一的维度
函数原型
torch.unsqueeze(input, dim)
关键参数说明:
●input (Tensor):输入Tensor
●dim (int):插入单例维度的索引
实战案例:
>>> x = torch.tensor([1, 2, 3, 4])
>>> torch.unsqueeze(x, 0)
tensor([[ 1, 2, 3, 4]])
>>> torch.unsqueeze(x, 1)
tensor([[ 1],
[ 2],
[ 3],
[ 4]])
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
训练过程如下
Epoch: 1, duration:8545ms, Train_acc:62.6%, Train_loss:0.822, Test_acc:61.3%,Test_loss:0.622
Epoch: 2, duration:5357ms, Train_acc:77.5%, Train_loss:0.462, Test_acc:80.0%,Test_loss:0.448
Epoch: 3, duration:5594ms, Train_acc:85.0%, Train_loss:0.340, Test_acc:79.3%,Test_loss:0.417
Epoch: 4, duration:5536ms, Train_acc:89.3%, Train_loss:0.263, Test_acc:80.4%,Test_loss:0.485
Epoch: 5, duration:5387ms, Train_acc:91.8%, Train_loss:0.226, Test_acc:77.2%,Test_loss:0.524
Epoch: 6, duration:5337ms, Train_acc:95.1%, Train_loss:0.175, Test_acc:84.6%,Test_loss:0.388
Epoch: 7, duration:5445ms, Train_acc:96.0%, Train_loss:0.136, Test_acc:86.9%,Test_loss:0.384
Epoch: 8, duration:5413ms, Train_acc:97.1%, Train_loss:0.108, Test_acc:86.7%,Test_loss:0.368
Epoch: 9, duration:5402ms, Train_acc:97.8%, Train_loss:0.094, Test_acc:85.5%,Test_loss:0.374
Epoch:10, duration:5360ms, Train_acc:98.6%, Train_loss:0.077, Test_acc:87.4%,Test_loss:0.370
Epoch:11, duration:5327ms, Train_acc:99.1%, Train_loss:0.057, Test_acc:86.2%,Test_loss:0.389
Epoch:12, duration:5432ms, Train_acc:99.5%, Train_loss:0.044, Test_acc:84.1%,Test_loss:0.500
Epoch:13, duration:5385ms, Train_acc:99.5%, Train_loss:0.043, Test_acc:86.2%,Test_loss:0.399
Epoch:14, duration:5419ms, Train_acc:99.8%, Train_loss:0.031, Test_acc:86.9%,Test_loss:0.400
Epoch:15, duration:5375ms, Train_acc:99.8%, Train_loss:0.025, Test_acc:86.9%,Test_loss:0.380
Epoch:16, duration:5373ms, Train_acc:99.9%, Train_loss:0.023, Test_acc:87.6%,Test_loss:0.374
Epoch:17, duration:5383ms, Train_acc:99.8%, Train_loss:0.023, Test_acc:88.8%,Test_loss:0.390
Epoch:18, duration:5398ms, Train_acc:99.9%, Train_loss:0.021, Test_acc:88.1%,Test_loss:0.425
Epoch:19, duration:5491ms, Train_acc:99.9%, Train_loss:0.020, Test_acc:87.6%,Test_loss:0.393
Epoch:20, duration:5405ms, Train_acc:99.9%, Train_loss:0.015, Test_acc:87.2%,Test_loss:0.400
在更改优化器为Adam代码的基础上,修改网络模型结构,提升测试精度
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2, 2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.dropout = nn.Dropout(p=0.5)
self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = self.dropout(x)
x = x.view(-1, 24 * 50 * 50)
x = self.fc1(x)
return x
训练过程如下
Epoch: 1, duration:7376ms, Train_acc:62.3%, Train_loss:0.812, Test_acc:69.7%,Test_loss:0.576
Epoch: 2, duration:5362ms, Train_acc:75.0%, Train_loss:0.522, Test_acc:77.4%,Test_loss:0.470
Epoch: 3, duration:5439ms, Train_acc:84.5%, Train_loss:0.369, Test_acc:78.3%,Test_loss:0.418
Epoch: 4, duration:5418ms, Train_acc:87.6%, Train_loss:0.305, Test_acc:84.4%,Test_loss:0.369
Epoch: 5, duration:5422ms, Train_acc:90.6%, Train_loss:0.253, Test_acc:83.0%,Test_loss:0.377
Epoch: 6, duration:5418ms, Train_acc:92.1%, Train_loss:0.215, Test_acc:87.6%,Test_loss:0.334
Epoch: 7, duration:5414ms, Train_acc:92.4%, Train_loss:0.196, Test_acc:86.5%,Test_loss:0.343
Epoch: 8, duration:5373ms, Train_acc:95.6%, Train_loss:0.140, Test_acc:84.4%,Test_loss:0.454
Epoch: 9, duration:5403ms, Train_acc:96.4%, Train_loss:0.125, Test_acc:87.2%,Test_loss:0.331
Epoch:10, duration:5402ms, Train_acc:96.8%, Train_loss:0.111, Test_acc:87.9%,Test_loss:0.300
Epoch:11, duration:5448ms, Train_acc:98.0%, Train_loss:0.081, Test_acc:89.5%,Test_loss:0.293
Epoch:12, duration:5394ms, Train_acc:98.4%, Train_loss:0.073, Test_acc:89.0%,Test_loss:0.314
Epoch:13, duration:5444ms, Train_acc:98.5%, Train_loss:0.064, Test_acc:88.6%,Test_loss:0.352
Epoch:14, duration:5400ms, Train_acc:98.0%, Train_loss:0.074, Test_acc:89.7%,Test_loss:0.322
Epoch:15, duration:5396ms, Train_acc:98.9%, Train_loss:0.052, Test_acc:89.7%,Test_loss:0.329
Epoch:16, duration:5519ms, Train_acc:99.0%, Train_loss:0.045, Test_acc:86.2%,Test_loss:0.397
Epoch:17, duration:5374ms, Train_acc:99.2%, Train_loss:0.038, Test_acc:90.2%,Test_loss:0.302
Epoch:18, duration:5464ms, Train_acc:99.3%, Train_loss:0.037, Test_acc:91.1%,Test_loss:0.314
Epoch:19, duration:5668ms, Train_acc:98.6%, Train_loss:0.054, Test_acc:88.3%,Test_loss:0.341
Epoch:20, duration:5540ms, Train_acc:99.6%, Train_loss:0.029, Test_acc:90.2%,Test_loss:0.308
在更改优化器为Adam+增加dropout层代码的基础上在训练模型阶段增加部分代码,保存最好的模型,预测前加载模型
"""训练模型--正式训练"""
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_test_acc=0
PATH = './model.pth' # 保存的参数文件名
for epoch in range(epochs):
milliseconds_t1 = int(time.time() * 1000)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
milliseconds_t2 = int(time.time() * 1000)
template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
if best_test_acc < epoch_test_acc:
best_test_acc = epoch_test_acc
# 模型保存
torch.save(model.state_dict(), PATH)
template = (
'Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f},save model.pth')
print(
template.format(epoch + 1, milliseconds_t2-milliseconds_t1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')
训练记录如下
Epoch: 1, duration:7342ms, Train_acc:61.6%, Train_loss:0.837, Test_acc:68.3%,Test_loss:0.796,save model.pth
Epoch: 2, duration:5390ms, Train_acc:75.4%, Train_loss:0.524, Test_acc:77.6%,Test_loss:0.472,save model.pth
Epoch: 3, duration:5348ms, Train_acc:82.4%, Train_loss:0.417, Test_acc:84.6%,Test_loss:0.411,save model.pth
Epoch: 4, duration:5377ms, Train_acc:85.1%, Train_loss:0.351, Test_acc:82.3%,Test_loss:0.424
Epoch: 5, duration:5362ms, Train_acc:85.7%, Train_loss:0.326, Test_acc:83.7%,Test_loss:0.426
Epoch: 6, duration:5371ms, Train_acc:88.3%, Train_loss:0.270, Test_acc:84.6%,Test_loss:0.353
Epoch: 7, duration:5426ms, Train_acc:92.6%, Train_loss:0.199, Test_acc:89.0%,Test_loss:0.320,save model.pth
Epoch: 8, duration:5432ms, Train_acc:89.7%, Train_loss:0.256, Test_acc:83.0%,Test_loss:0.478
Epoch: 9, duration:5447ms, Train_acc:93.1%, Train_loss:0.189, Test_acc:85.5%,Test_loss:0.395
Epoch:10, duration:5630ms, Train_acc:95.2%, Train_loss:0.133, Test_acc:87.4%,Test_loss:0.316
Epoch:11, duration:5469ms, Train_acc:95.2%, Train_loss:0.127, Test_acc:87.2%,Test_loss:0.352
Epoch:12, duration:5366ms, Train_acc:96.3%, Train_loss:0.106, Test_acc:90.0%,Test_loss:0.328,save model.pth
Epoch:13, duration:5543ms, Train_acc:97.3%, Train_loss:0.085, Test_acc:88.6%,Test_loss:0.284
Epoch:14, duration:5500ms, Train_acc:97.4%, Train_loss:0.084, Test_acc:89.3%,Test_loss:0.299
Epoch:15, duration:5398ms, Train_acc:97.9%, Train_loss:0.068, Test_acc:90.2%,Test_loss:0.269,save model.pth
Epoch:16, duration:5436ms, Train_acc:98.4%, Train_loss:0.056, Test_acc:88.8%,Test_loss:0.282
Epoch:17, duration:5447ms, Train_acc:99.1%, Train_loss:0.050, Test_acc:87.6%,Test_loss:0.325
Epoch:18, duration:5483ms, Train_acc:97.7%, Train_loss:0.067, Test_acc:89.5%,Test_loss:0.294
Epoch:19, duration:5431ms, Train_acc:98.7%, Train_loss:0.046, Test_acc:90.2%,Test_loss:0.298
Epoch:20, duration:5553ms, Train_acc:99.4%, Train_loss:0.032, Test_acc:90.7%,Test_loss:0.278,save model.pth
通过本文的学习,pytorch实现猴痘病识别,并通过改变优化器的方式,以及增加dropout层,提升了原有模型的测试精度,并保存训练过程中最好的模型。