【Pytorch】Transposed Convolution

【Pytorch】Transposed Convolution_第1张图片

文章目录

  • 1 卷积
  • 2 反/逆卷积
  • 3 MaxUnpool / ConvTranspose
  • 4 encoder-decoder
  • 5 可视化

学习参考来自:

  • 详解逆卷积操作–Up-sampling with Transposed Convolution

  • PyTorch使用记录

  • https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

1 卷积

输入
【Pytorch】Transposed Convolution_第2张图片
卷积核

在这里插入图片描述

步长为 1,卷起来形式如下

【Pytorch】Transposed Convolution_第3张图片
输出的每个结果和输入的 9 个数值有关系

更直观的写成如下展开的矩阵乘形式

【Pytorch】Transposed Convolution_第4张图片

【Pytorch】Transposed Convolution_第5张图片
填零和 stride 与 kernel size 有关

2 反/逆卷积

相比逆卷积 (Deconvolution),转置卷积 (Transposed Convolution) 是一个更为合适的叫法

上述过程反过来,输入的一个数值与输出的 9 个数值有关

【Pytorch】Transposed Convolution_第6张图片

把原来的 W W W 转置一下即可实现该功能,当然转置后的 W W W 也是需要去学习更新的

【Pytorch】Transposed Convolution_第7张图片

矩阵乘可以看到,输入的每个值影响到了输出的 9 个值

3 MaxUnpool / ConvTranspose

搞个代码简单的看看效果

"maxpool"
m = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, return_indices=True)
input_data = torch.tensor([[[
    [1, 2, 8, 7],
    [3, 4, 6, 5],
    [9, 10, 16, 15],
    [13, 14, 12, 11]
]]], dtype=torch.float32)
print(input_data.shape)  # torch.Size([1, 1, 4, 4])

out, indices = m(input_data)
print(out, "\n", indices)

output

tensor([[[[ 4.,  8.],
          [14., 16.]]]]) 
 tensor([[[[ 5,  2],
          [13, 10]]]])

【Pytorch】Transposed Convolution_第8张图片

"maxuppooling"
n = nn.MaxUnpool2d(kernel_size=2, stride=2, padding=0)
out = n(out, indices, output_size=input_data.size())
print(out)

output

tensor([[[[ 0.,  0.,  8.,  0.],
          [ 0.,  4.,  0.,  0.],
          [ 0.,  0., 16.,  0.],
          [ 0., 14.,  0.,  0.]]]])

【Pytorch】Transposed Convolution_第9张图片

在使用 MaxUnpool 的时候要特别注意, 需要在 maxpool 的时候保存 indices. 否则会报错

下面看看其在网络中的简单应用

import torch.nn as nn
import torch

"MaxUnpool"
class ConvDAE(nn.Module):
    def __init__(self):
        super().__init__()
        # input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 16, 3, stride=1, padding=1),  # batch x 16 x 32 x 32
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.MaxPool2d(2, stride=2, return_indices=True)
        )
        self.unpool = nn.MaxUnpool2d(2, stride=2, padding=0)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0),
            nn.ReLU()
        )
    def forward(self, x):
        out, indices = self.encoder(x)  # torch.Size([1, 16, 16, 16])
        out = self.unpool(out, indices)  # torch.Size([1, 16, 32, 32])
        out = self.decoder(out)  # torch.Size([1, 3, 64, 64])
        return out
if __name__ == "__main__":
    DAE = ConvDAE()
    x = torch.randn((1, 3, 32, 32))
    DAE(x)

网络结构比较简单,encoder 降低图片分辨率至 1/2,通道数不变

unpool 反 max pooling 恢复图片分辨率

decoder 反卷积提升图片分辨率

4 encoder-decoder

再看一个稍微复杂的 encoder-decoder 结构

class autoencoder(nn.Module):
    def __init__(self):
        super(autoencoder, self).__init__()
        # -------
        # encode
        # -------
        self.encode1 = nn.Sequential(
            # 第一层
            nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12), # (1,784)->(32,784)
            nn.BatchNorm1d(32), # 加上BN的结果
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1, return_indices=True), # (32,784)->(32,262)
        )
        self.encode2 = nn.Sequential(
            # 第二层
            nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12), # (32,262)->(64,262)
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1, return_indices=True), # (batchsize,64,262)->(batchsize,64,88)
        )
        self.encode3 = nn.Sequential(
            nn.Linear(in_features=88*64, out_features=1024),
            nn.Linear(in_features=1024, out_features=30)
        )
        # -------
        # decode
        # -------
        self.unpooling1 = nn.MaxUnpool1d(kernel_size=3, stride=3, padding=1) # (batchsize,64,262)<-(batchsize,64,88)
        self.unpooling2 = nn.MaxUnpool1d(kernel_size=3, stride=3, padding=1) # (32,784)<-(32,262)
        self.decode1 = nn.Sequential(
            # 第一层
            nn.ReLU(),
            nn.BatchNorm1d(64),
            nn.ConvTranspose1d(kernel_size=25, in_channels=64, out_channels=32, stride=1, padding=12), # (32,262)<-(64,262)
        )
            # 第二层
        self.decode2 = nn.Sequential(
            nn.ReLU(),
            nn.BatchNorm1d(32), # 加上BN的结果
            nn.ConvTranspose1d(kernel_size=25, in_channels=32, out_channels=1, stride=1, padding=12), # (1,784)<-(32,784)
        )
        self.decode3 = nn.Sequential(
            nn.Linear(in_features=30, out_features=1024),
            nn.Linear(in_features=1024, out_features=88*64)
        )
    def forward(self, x):
        # encode
        x = x.view(x.size(0),1,-1) # 将图片摊平 torch.Size([1, 1, 784])
        x,indices1 = self.encode1(x) # 卷积层 torch.Size([1, 32, 262])
        x,indices2 = self.encode2(x) # 卷积层 torch.Size([1, 64, 88])
        x = x.view(x.size(0), -1) # 展开 torch.Size([1, 5632])
        x = self.encode3(x) # 全连接层 torch.Size([1, 30])
        # decode
        x = self.decode3(x) # torch.Size([1, 5632])
        x = x.view(x.size(0), 64, 88)  # torch.Size([1, 64, 88])
        x = self.unpooling1(x, indices2)  # torch.Size([1, 64, 262])
        x = self.decode1(x)  # torch.Size([1, 32, 262])
        x = self.unpooling2(x, indices1) # torch.Size([1, 32, 784])
        x = self.decode2(x)  # torch.Size([1, 1, 784])
        return x


if __name__ == "__main__":
    x = torch.randn((1, 1, 28, 28))
    autoencoder = autoencoder()
    autoencoder(x)

结构草图如下所示

【Pytorch】Transposed Convolution_第10张图片

主要展示的是 nn.ConvTransposenn.MaxUnpool 的运用,nn.MaxUnpool 要记得 indices

应用主要是 1d,2d 同理可以拓展

5 可视化

简单的实验,输入 MNIST 原始图片,conv+max pooling 下采样,maxunpooling+transposed conv 回原图,看看效果

载入相关库,载入数据集

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import numpy as np
import cv2
import matplotlib.pyplot as plt
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)
test_dataset = torchvision.datasets.MNIST(root='./',
                                          train=False,
                                          transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

图像可视化的前期工作

def imshow(img):
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))

搭建神经网络,及其初始化

# 搭建网络
class CNNMNIST(nn.Module):
    def __init__(self):
        super(CNNMNIST,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=1,padding=0)
        self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2,padding=0,return_indices=True)
        self.unpool1 = nn.MaxUnpool2d(kernel_size=2,stride=2,padding=0)
        self.unconv1 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=0)
    def forward(self,x):
        # encode
        out = self.conv1(x)  # torch.Size([100, 1, 26, 26])
        out,indices = self.pool1(out)  # torch.Size([100, 1, 13, 13])
        # deocde
        out = self.unpool1(out,indices,output_size=out1.size())  # torch.Size([100, 1, 26, 26])
        out = self.unconv1(out)  # torch.Size([100, 1, 28, 28])
        return out

# 网络的初始化
model = CNNMNIST().to(device)
print(model)

output

CNNMNIST(
  (conv1): Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (unpool1): MaxUnpool2d(kernel_size=(2, 2), stride=(2, 2), padding=(0, 0))
  (unconv1): ConvTranspose2d(1, 1, kernel_size=(3, 3), stride=(1, 1))
)

网络训练与保存

# 定义优化器和损失函数
criterion = nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 进行训练
model.train()
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # Move tensors to the configured device
        images = images.to(device)
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, images)
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (i+1) % 100 == 0:
            # 计算Loss
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format
                  (epoch+1, num_epochs, i+1, total_step, loss.item()))
                  
"save model"
torch.save(model, "model.pkl")

output

Epoch [1/5], Step [100/600], Loss: 0.0764
Epoch [1/5], Step [200/600], Loss: 0.0549
Epoch [1/5], Step [300/600], Loss: 0.0457
Epoch [1/5], Step [400/600], Loss: 0.0468
Epoch [1/5], Step [500/600], Loss: 0.0443
Epoch [1/5], Step [600/600], Loss: 0.0452
Epoch [2/5], Step [100/600], Loss: 0.0445
Epoch [2/5], Step [200/600], Loss: 0.0427
Epoch [2/5], Step [300/600], Loss: 0.0407
Epoch [2/5], Step [400/600], Loss: 0.0432
Epoch [2/5], Step [500/600], Loss: 0.0414
Epoch [2/5], Step [600/600], Loss: 0.0413
Epoch [3/5], Step [100/600], Loss: 0.0415
Epoch [3/5], Step [200/600], Loss: 0.0420
Epoch [3/5], Step [300/600], Loss: 0.0425
Epoch [3/5], Step [400/600], Loss: 0.0413
Epoch [3/5], Step [500/600], Loss: 0.0416
Epoch [3/5], Step [600/600], Loss: 0.0414
Epoch [4/5], Step [100/600], Loss: 0.0401
Epoch [4/5], Step [200/600], Loss: 0.0409
Epoch [4/5], Step [300/600], Loss: 0.0418
Epoch [4/5], Step [400/600], Loss: 0.0412
Epoch [4/5], Step [500/600], Loss: 0.0407
Epoch [4/5], Step [600/600], Loss: 0.0405
Epoch [5/5], Step [100/600], Loss: 0.0411
Epoch [5/5], Step [200/600], Loss: 0.0412
Epoch [5/5], Step [300/600], Loss: 0.0406
Epoch [5/5], Step [400/600], Loss: 0.0407
Epoch [5/5], Step [500/600], Loss: 0.0409
Epoch [5/5], Step [600/600], Loss: 0.0401

模型载入,可视化结果

"load model"
model = torch.load("model.pkl")

"visual"
dataiter = iter(train_loader)
images, lables = dataiter.next()

imshow(torchvision.utils.make_grid(images, nrow=10))
plt.show()

images = images.to(device)

# Forward pass
outputs = model(images)
imshow(torchvision.utils.make_grid(outputs.cpu().squeeze(0), nrow=10))
plt.show()

MNIST 多图的可视化,可以借鉴借鉴,核心代码为 torchvision.utils.make_grid

部分输入
【Pytorch】Transposed Convolution_第11张图片
部分输出
【Pytorch】Transposed Convolution_第12张图片

换成纯卷积的失真率更少

class CNNMNIST(nn.Module):
    def __init__(self):
        super(CNNMNIST,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=1,padding=0)
        self.conv2 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2,padding=0)
        self.unconv1 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=2, stride=2, padding=0)
        self.unconv2 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=0)
    def forward(self,x):
        # encode
        out = self.conv1(x)  # torch.Size([100, 1, 26, 26])
		out = self.conv2(out)  # torch.Size([100, 1, 13, 13])
        # deocde
        out = self.unconv1(out)  # torch.Size([100, 1, 26, 26])
        out = self.unconv2(out)  # torch.Size([100, 1, 28, 28])
        return out

输入
【Pytorch】Transposed Convolution_第13张图片

输出
【Pytorch】Transposed Convolution_第14张图片

你可能感兴趣的:(pytorch,人工智能,python,反卷积,逆卷积)