- DeepSeek与剪映短视频创作指南
meisongqing
人工智能DeepSeek剪映
DeepSeek(深度求索)作为一家专注实现AGI的中国公司,其技术可能涉及AI文本生成、图像处理等领域,结合剪映的智能剪辑功能,可以大幅提升短视频创作效率。以下是结合两者优势的详细创作步骤:一、创意策划阶段AI灵感激发使用DeepSeek的AI文本生成功能,输入关键词(如"美食教程"、"科技科普")获取创意方向生成10-20个标题备选(示例Prompt:"生成10个吸引年轻人的美妆短视频标题")
- NTIRE比赛:技术前沿、国内企业表现与计算机视觉未来展望
AndrewHZ
深度学习新浪潮计算机视觉人工智能深度学习调研报告算法NTIRE画质算法
一、NTIRE比赛概述:图像恢复与增强领域的全球竞技场1.1NTIRE的定位与历史NTIRE(NewTrendsinImageRestorationandEnhancement)是计算机视觉领域最具影响力的国际赛事之一,聚焦于图像恢复与增强技术的前沿探索。自2017年首次举办以来,NTIRE每年与计算机视觉顶会CVPR联合召开,成为学术界与工业界技术实力的重要展示平台。其竞赛内容涵盖图像超分辨率、
- 卡尔曼滤波算法c语言stm32,卡尔曼滤波算法及C语言实现_源代码
weixin_39643255
卡尔曼滤波算法c语言stm32
a往南向北2019-01-1620:39:2011340收藏111分类专栏:C语言嵌入式文章标签:卡尔曼滤波C代码卡尔曼滤波理论很容易就可以在MATLAB软件环境下实现,但是,实际的硬件板子上还是需要C语言,当然可以自动代码生成,还有一种就是直接手动编写C语言。1.前言在google上搜索卡尔曼滤波,很容易找到以下这个帖子:http://blog.csdn.net/lanbing510/artic
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- CV:图像的直方图均衡化
壹十壹
CVopencv计算机视觉人工智能
均衡化在图像处理中通常指的是直方图均衡化(HistogramEqualization),其主要目的是改善图像的对比度,使图像细节更加明显。以下是对直方图均衡化的详细说明:直方图均衡化原理直方图图像的直方图表示各灰度级在图像中出现的频率。对于对比度较低的图像,直方图可能集中在灰度范围的某一小区间。均衡化目标直方图均衡化通过将原图的灰度分布重新映射,使得输出图像的直方图尽量均匀分布在整个灰度范围内。这
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 06 - gldas水文模型数据处理 - 下载、matlab读取
咋(za)说
论文笔记笔记经验分享
gldas水文模型数据处理-下载、matlab读取0.引言1.GLDAS水文数据介绍2.GLDAS数据下载3.GLDAS数据读取的matlab程序0.引言 根据水量平衡方程,陆地水储量变化(Δtws\DeltatwsΔtws
- matlab spmd,matlab并行计算命令
其实我是老莫
matlabspmd
1.matlab仿真模型怎么并行计算以单台双核计算机为例。首先打开MATLAB命令窗口,输入matlabpoolopen就OK了。这样,就相当于将一台计算机的两个核心,当做两台机器用啦。接下来是编程序实现的方法。MATLAB并行计算的模式有几种?主要是两种:parfor模式和spmd模式。两种模式的应用都很简单。第一个中,parfor其实就是parallel+for简化而来,顾名思义啊,就是把原来
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何使用ArkTS构建一个高性能的图像处理应用,涵盖从基础图像操作到高级滤镜应用的完整开发流程。我们将通过一个实际的案例——实现一个实时图像滤镜应用,来展示ArkTS在HarmonyNext平台上的强大能力。环境准备在开始之前,确保你的开发环
- HarmonyNext实战案例:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,ArkTS作为新一代的编程语言,为开发者提供了强大的工具来构建高性能、跨平台的应用。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的图像处理应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的特性,结合ArkTS的强大功能,实现复杂的图
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- 基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
深度学习&目标检测实战项目
YOLOui分类数据挖掘目标跟踪
1.引言烟雾是火灾发生的一个重要早期信号。烟雾检测能够在火灾初期及时识别并报警,为火灾的扑灭争取宝贵的时间。因此,烟雾检测的研究一直是计算机视觉领域中的一个热点问题。近年来,随着深度学习技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。在这篇博客中,我们将介绍如何使用YOLOv5模型进行烟雾检测
- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- 【基于手势识别的音量控制系统】
合肥玉安人工智能工作室
PythonOpenCVpythonmediapipe手势手势控制音量
基于手势识别的音量控制系统github项目效果这是一个结合了计算机视觉和系统控制的实用项目,通过识别手势来实现音量的无接触控制,同时考虑到了用户隐私,加入了实时人脸遮罩功能。核心功能实现1.手势识别与音量映射系统使用MediaPipe框架进行手部关键点检测,通过计算大拇指和食指之间的距离来控制音量:def_process_landmarks(self,hand_landmarks):#获取手指关键
- opencv cuda例程 OpenCV和Cuda结合编程
weixin_44602056
opencvC++
本文转载自:https://www.fuwuqizhijia.com/linux/201704/70863.html此网页,仅保存下来供随时查看一、利用OpenCV中提供的GPU模块目前,OpenCV中已提供了许多GPU函数,直接使用OpenCV提供的GPU模块,可以完成大部分图像处理的加速操作。该方法的优点是使用简单,利用GpuMat管理CPU与GPU之间的数据传输,而且不需要关注内核函数调用参
- 【2020蓝桥杯省赛“蛇形填数“python实现】纯暴力规律求解
自由之翼explore
蓝桥杯python职场和发展算法
原题如下在网上找的python解答都让我云里雾里的,无奈自己太笨,于是乎开始寻找这个问题的简单规律,最后倒确实找到了:(我先用MatLab生成了一个蛇形矩阵,这段代码是在CSDN上找的)%Zigzagscanningn=8;a=zeros(n);%初始化a(1,1)=1;i=1;%行j=1;%列f=0;%标志位1表示行增加列减小k=2;%循环赋值从左上角开始循环while(kn^2)break;e
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- 【无标题】
东东就是我
opencv计算机视觉人工智能
1.计算机视觉与图像处理计算机视觉技术涵盖从图像预处理到目标检测的全流程,是工业视觉系统的核心部分。知识点扩展OpenCV基础cv2.imread()、cv2.imshow()、cv2.imwrite()进行基本图像读取、显示、保存cv2.cvtColor()进行颜色空间转换(RGB↔GRAY,RGB↔HSV)cv2.resize()进行图像缩放cv2.flip()进行图像翻转(水平/垂直)imp
- 用MATLAB打造浪漫3D粒子心脏:代码解析与动态可视
爱玩三国杀的界徐盛
matlab3d开发语言
一、效果预览本文我们将用MATLAB实现一个令人惊艳的3D动态可视化效果:旋转的粒子心脏悬浮在星空背景中,粉紫色的心形粒子群与不同层次的旋转星辰交相辉映。这个效果结合了三维曲面生成、粒子系统、坐标变换等多项技术,最终呈现出一个充满科技感的动态艺术作品。二、代码解析2.1颜色配置模块col=@(n)repmat([255,158,196]./255,[n,1])+repmat([-39,-81,-5
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- 基于支持向量数据描述 (SVDD) 进行多类分类(Matlab代码实现)
荔枝科研社
分类matlab人工智能
个人主页:研学社的博客欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、SVDD算法原理三、基于SVDD的多类分类方法四、讨论与展望五、结论2运行结果3参考文献4Matlab代码实现1概述使用支持向量数据描述(SVDD)进行多类分类。矩阵代码。基于SVDD的多类分类在此MATLAB脚本中呈现。多类
- 基于信息间隙决策理论的碳捕集电厂调度(Matlab代码实现)
砌墙_2301
matlab算法人工智能
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于信息间隙决策理论(IGDT)的碳捕集电厂调度研究综述一、信息间隙决策理论(IGDT)的定义与核心原理二、碳捕集电厂调度的主要研究方向与挑战三、IGDT在碳捕集电厂调度中的模型框架四、现有调度方法的局限性及IGDT的改进五、实证研究案例分析六、总结与
- 用OpenCV写个视频播放器可还行?(C++版)
程序员Linc
OpenCVopencv音视频c++opencv4.11
引言提到OpenCV,大家首先想到的可能是图像处理、目标检测,但你是否想过——用OpenCV实现一个带进度条、倍速播放、暂停功能的视频播放器?本文将通过一个实战项目,带你深入掌握OpenCV的视频处理能力,并解锁以下功能:基础播放/暂停动态倍速调节(0.5x~4x)交互式进度条实时时间戳显示文末提供完整代码,可直接运行!一、环境准备安装OpenCV请参考其他博客,C++版本的OpenCV安装,每个
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&