[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第1张图片

1.简述

        本篇文章主要介绍一下,在Unity端,集成智谱AI开放平台提供的chatglm模型api,实现AI聊天互动相关的功能。从智谱AI官方站点上看到,提供有chatglm turbo的公共模型服务,能够实现32K超长上下文,应用到我们的AI二次元小姐姐项目中,完全足够了。

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第2张图片

        价格方面,官方页面上有看到,0.005元/千tokens这样的价格,而且目前新注册用户可以获取18元的API试用金额,核算下来,可以免费使用几百万的token,算是一笔不错的免费额度了。那么接下来,咱们来看一下如何在智谱AI开放平台申请API应用,并集成到Unity中吧。

2.智谱AI开放平台

        首先,进入到智谱AI开放平台的官方站点,通过以下链接,进入到智谱AI开放平台网站

https://maas.aminer.cn/pricingicon-default.png?t=N7T8https://maas.aminer.cn/pricing       [Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第3张图片

        进入官方站点后,自行注册账号,登录进入到智谱开放平台的控制台界面。

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第4张图片

        在控制台界面,可以看到平台赠送的18元试用金。点击查看api key按钮即可进入到应用创建页面,新增一个apikey,后续在Unity端调用api服务时,需要用到这个apikey。

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第5张图片

3.接口说明

       3.1 接口对接流程

        根据官方文档说明,可以了解到,目前智谱AI开放平台针对Python以及Java提供有SDK,可以自行下载sdk示例。那么我们使用Unity就没有sdk可用了,只能根据官方文档的说明自行实现相关功能。

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第6张图片

        官方介绍了http调用的方式,总体流程上:

        ①接口鉴权,需要根据标准JWT的规则,生成token

        在调用模型接口时需要传鉴权 token 进行认证;当前平台鉴权 token 由用户端生成,鉴权 token 生成采用标准 JWT 中提供的创建方法生成(详细参考:JSON Web Token Introduction - jwt.io)。

        ②api调用,采用post访问资源地址即可。

        这里需要说明一下,POST访问的Url地址,chatglm turbo的模型访问地址:
https://open.bigmodel.cn/api/paas/v3/model-api/chatglm_turbo/sse-invokeicon-default.png?t=N7T8https://open.bigmodel.cn/api/paas/v3/model-api/chatglm_turbo/invoke     

  注:这里我使用的是官方不推进的同步方式,因为项目当前的情况,所以选择了这个方式,官方还提供有异步方式以及SSE两种方式,可以自行阅读文档。

        官方文档地址:
https://maas.aminer.cn/dev/api#chatglm_turboicon-default.png?t=N7T8https://maas.aminer.cn/dev/api#chatglm_turbo

3.2 Unity中的代码实现

        本节内容将介绍在Unity中如何完成接口鉴权以及api的http访问的代码实现。

        一、接口鉴权

        官方文档在接口鉴权流程中的token生成规则的描述不是很清晰,只描述了header和payload的格式,其实还有一部分Signature的生成规则,并没有在文档里说明,详细可以参见JWT的生成规则。

        1、header的内容规则

        根据官方文档,header部分的值为:

 {"alg":"HS256","sign_type":"SIGN"}

  • alg : 属性表示签名使用的算法,默认为 HMAC SHA256(写为HS256)

  • sign_type : 属性表示令牌的类型,JWT 令牌统一写为 SIGN 。

        2、payload 的内容规则

        官方示例为

 {"api_key":{ApiKey.id},"exp":1682503829130, "timestamp":1682503820130}

  • api_key : 属性表示用户标识 id,即用户API Key的{id}部分
  • exp : 属性表示生成的JWT的过期时间,客户端控制,单位为毫秒
  • timestamp : 属性表示当前时间戳,单位为毫秒

        这里需要注意一点,apikey的部分,前面从站点上创建的api key,观察api key的结构,是这样的规则{id}.{secret key},我们拿到apikey时,需要将密钥拆分成两部分,一部分就是上面这个payload需要使用的api_key,而另一部分的secret key,我们在后面生成Signature的时候要用到。

        关于时间戳,生成13位时间戳编码即可。

        鉴权token生成部分的代码如下:

    #region 生成api鉴权token

    /// 
    /// 生成api鉴权 token
    /// 
    /// 
    private string GetToken()
    {
        long expirationMilliseconds = DateTimeOffset.Now.AddHours(1).ToUnixTimeMilliseconds();
        long timestampMilliseconds = DateTimeOffset.Now.ToUnixTimeMilliseconds();
        string jwtToken = GenerateJwtToken(m_ApiKey, expirationMilliseconds, timestampMilliseconds);
        return jwtToken;
    }
    //获取token
    private string GenerateJwtToken(string apiKeyId, long expirationMilliseconds, long timestampMilliseconds)
    {
        // 构建Header
        string _headerJson = "{\"alg\":\"HS256\",\"sign_type\":\"SIGN\"}";

        string encodedHeader = Base64UrlEncode(_headerJson);

        // 构建Payload
        string _playLoadJson = string.Format("{{\"api_key\":\"{0}\",\"exp\":{1}, \"timestamp\":{2}}}", apiKeyId, expirationMilliseconds, timestampMilliseconds);

        string encodedPayload = Base64UrlEncode(_playLoadJson);

        // 构建签名
        string signature = HMACsha256(m_SecretKey, $"{encodedHeader}.{encodedPayload}");
        // 组合Header、Payload和Signature生成JWT令牌
        string jwtToken = $"{encodedHeader}.{encodedPayload}.{signature}";

        return jwtToken;
    }
    // Base64 URL编码
    private string Base64UrlEncode(string input)
    {
        byte[] inputBytes = Encoding.UTF8.GetBytes(input);
        string base64 = Convert.ToBase64String(inputBytes);
        return base64.Replace('+', '-').Replace('/', '_').TrimEnd('=');
    }
    // 使用HMAC SHA256生成签名
    private string HMACsha256(string apiSecretIsKey, string buider)
    {
        byte[] bytes = Encoding.UTF8.GetBytes(apiSecretIsKey);
        HMACSHA256 hMACSHA256 = new System.Security.Cryptography.HMACSHA256(bytes);
        byte[] date = Encoding.UTF8.GetBytes(buider);
        date = hMACSHA256.ComputeHash(date);
        hMACSHA256.Clear();

        return Convert.ToBase64String(date);

    }
    #endregion

        二、Http访问

        获取到接口鉴权token后,通过POST访问api地址,接口地址如下:
https://open.bigmodel.cn/api/paas/v3/model-api/chatglm_turbo/sse-invokeicon-default.png?t=N7T8https://open.bigmodel.cn/api/paas/v3/model-api/chatglm_turbo/invoke     

        关于接口的报文结构,根据官方提供的接口文档说明,这里做一下详细说明。

        请求报文结构:

prompt

list

调用对话模型时,将当前对话信息列表作为提示输入给模型; 按照 {"role": "user", "content": "你好"} 的键值对形式进行传参; 总长度超过模型最长输入限制后会自动截断,需按时间由旧到新排序

role

string

本条信息作者的角色,可选择user 或 assistant
user 指用户角色输入的信息
assistant 指模型返回的信息

content

string

本条信息的具体内容

temperature

float

采样温度,控制输出的随机性,必须为正数
取值范围是:(0.0,1.0],不能等于 0,默认值为 0.95
值越大,会使输出更随机,更具创造性;值越小,输出会更加稳定或确定
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数

top_p

float

用温度取样的另一种方法,称为核取样
取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1,默认值为 0.7
模型考虑具有 top_p 概率质量tokens的结果
例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取tokens
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数

request_id

string

由用户端传参,需保证唯一性;用于区分每次请求的唯一标识,用户端不传时平台会默认生成。

incremental

boolean

SSE接口调用时,用于控制每次返回内容方式是增量还是全量,不提供此参数时默认为增量返回
true 为增量返回
false 为全量返回

return_type

string

用于控制每次返回内容的类型,空或者没有此字段时默认按照json_string返回
json_string 返回标准的 JSON 字符串
text 返回原始的文本内容

ref

object

用于控制请求时的外部信息引用,目前用于控制是否引用外部信息,空或者没有此字段时默认开启搜索,传参格式
{"enable": "true", "search_query": "历史"}

          回复报文结构:

code

int

错误码,详情请查看错误码说明

msg

string

错误信息

success

boolean

请求成功失败标识,true(成功),false(失败)

data

object

request_id

string

用户在客户端请求时提交的任务编号或者平台生成的任务编号

task_id

string

智谱AI开放平台生成的任务订单号,调用请求结果接口时请使用此订单号

task_status

string

处理状态,PROCESSING(处理中),SUCCESS(成功),FAIL(失败)
注:处理中状态需通过查询获取结果

        接口的调用,采用POST方式即可,示例代码如下:

/// 
    /// 发送数据
    ///  
    /// 
    /// 
    /// 
    public override IEnumerator Request(string _postWord, System.Action _callback)
    {
        stopwatch.Restart();
        string jsonPayload = JsonConvert.SerializeObject(new RequestData
        {
            model=m_Type.ToString(),
            prompt = m_DataList
        });

        using (UnityWebRequest request = new UnityWebRequest(url, "POST"))
        {
            byte[] data = System.Text.Encoding.UTF8.GetBytes(jsonPayload);
            request.uploadHandler = (UploadHandler)new UploadHandlerRaw(data);
            request.downloadHandler = (DownloadHandler)new DownloadHandlerBuffer();

            request.SetRequestHeader("Content-Type", "application/json");
            request.SetRequestHeader("Authorization", GetToken());

            yield return request.SendWebRequest();

            if (request.responseCode == 200)
            {
                string _msg = request.downloadHandler.text;
                ResponseData response = JsonConvert.DeserializeObject(_msg);

                if (response.data.choices.Count > 0)
                {
                    string _msgBack = response.data.choices[0].content;

                    //回调
                    _callback(_msgBack);
                }
                else
                {
                    Debug.Log(_msg);
                }
            }

        }

        stopwatch.Stop();
        Debug.Log("chatGLM Turbo耗时:" + stopwatch.Elapsed.TotalSeconds);
    }



        数据定义:

[Serializable]
    private class RequestData
    {
        [SerializeField] public string model;
        [SerializeField] public List prompt;
        [SerializeField] public float temperature = 0.7f;
    }

    [Serializable]
    private class ResponseData
    {
        [SerializeField] public int code;
        [SerializeField] public string msg = string.Empty;
        [SerializeField] public string success = string.Empty;
        [SerializeField] public ReData data=new ReData();

    }

    [Serializable]
    private class ReData
    {
        [SerializeField] public string task_id = string.Empty;
        [SerializeField] public string request_id = string.Empty;
        [SerializeField] public string task_status = string.Empty;
        [SerializeField] public List choices=new List();
    }

4. Unity端数字人配置

        项目的源码已经发布到Github了,我们可以直接下载,并导入到unity中使用,要求unity版本在2020.3.44及以上。导入工具包之后,可以在Scene文件夹下,找到示例场景,在场景中找到LLM->chatglm Turbo对象,这里就维护了智谱AI开放平台的模型调用脚本。

        项目已经实现了智谱AI开放平台对接所需的接口鉴权以及API访问的代码,我们只需要在控制台中,找到创建好的api key,将密钥填写到脚本中的{Key}参数即可。

[Unity+智谱AI开放平台]调用ChatGLM Tuobo模型驱动AI小姐姐数字人_第7张图片

        详细配置,可以到我的B站主页,查看本期视频的配置过程。

5.结束语
      

        这次的文章简单介绍了智谱AI开放平台的API的对接流程,并针对接口对接的流程进行了介绍,包括接口的鉴权、基于JWT的token生成规则,以及chatglm turbo模型的接口调用代码示例等内容,通过上述的代码实现,我们就可以在unity引擎中,使用智谱AI开放平台的api来驱动AI二次元小姐姐的对话交互。完整的代码工程可以从我的开源项目下载使用,项目包含了针对多种GPT应用的集成工具,以及语音服务的集成,对我这个项目感兴趣的朋友,可以上我的B站号查看,我也做有详细的教程,相关源码可以在的哔哩哔哩主站找到相关视频,在视频介绍以及评论区获取。

[Unity+AI Chat+智谱AI]轻松实现32K超长上下文对话, 对接智谱AI开放平台ChatGLM Turbo,简单配置AI二次元小姐姐


项目地址传送门:

AI二次元老婆开源项目(unity-AI-Chat-Toolkit):

Github地址:https://github.com/zhangliwei7758/unity-AI-Chat-Toolkit

Gitee地址:https://gitee.com/DammonSpace/unity-ai-chat-toolkit

你可能感兴趣的:(人工智能)