- 【新手向】从零开始学习Java(Day29)Java 网络编程
星河天欲瞩
从零开始学习Java学习java开发语言jvm网络后端
每天二十分钟,成就Java大神,点点关注不迷路!今天是第二十九天,给坚持到这里的小伙伴点个赞!对抗混乱即修行,共勉!目录网络编程基础概念Socket(套接字)ServerSocket类(服务器端)构造方法常用方法Socket类构造方法常用方法InetAddress类本地实例服务端客户端运行步骤下节预告网络编程基础概念网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来。网络模
- WordPress建站给外贸人带来的负担
小机出海
建站常谈服务器sslhttps
WordPress是全球最大的开源建站平台,有着丰富的主题与插件,尽管功能非常强大,但也给想要建站的外贸人带来了一些负担。一、技术门槛与学习成本1、由于WordPress发展了几十年,里面的功能应有尽有,但往往这些复杂的功能导致建站新手对它的学习成本变得很高,需要理解各个模块与功能点,增加了上手的复杂度。2、WordPress的建站服务商他不会告诉你,你可能需要知道一些代码知识(HTML、CSS、
- STM32应用(六)一阶卡尔曼滤波代码和简单应用
2401_87557129
stm32嵌入式硬件单片机
STM32应用(五)基于输入捕获的超声波HC-SR04模块使用1.一阶卡尔曼滤波代码实现1.1Kalman滤波代码1.1.1Kalman.c文件#include"Kalman.h"voidKalman\_Init(){kfp.Last_P=1;kfp.Now_P=0;kfp.out=0;kfp.Kg=0;kfp.Q=0;kfp.R=0.01;}/\*\*\*卡尔曼滤波器\*@paramKalman
- 【二分算法】-- 三种二分模板总结
雨雨雨雨点子
算法算法java开发语言leetcode
文章目录1.特点2.学习中的侧重点2.1算法原理2.2模板2.2.1朴素二分模板(easy-->有局限)2.2.2查找左边界的二分模板2.2.3查找右边界的二分模板1.特点二分算法是最恶心,细节最多,最容易写出死循环的算法====但是,一旦掌握了之后,二分算法就是最简单的算法。其实并不是一定要二分,三分,四分也都可以,但是根据概率学中的求期望数学中可知,二分是效率最高的。如果是三分的话,我们就像是
- 深入学习Nginx:从入门到实践
小码快撩
nginx学习运维
引言Nginx,全名“EngineX”,是一款高性能的HTTP和反向代理服务器,由俄罗斯程序员IgorSysoev开发。以其轻量级、高并发处理能力和稳定性而闻名于世,广泛应用于负载均衡、动静内容分离、API网关、缓存服务以及静态文件服务等多个场景。本文旨在为读者提供一份详尽的Nginx技术学习指南,助您快速掌握并应用这一强大工具。。一、事件驱动模型在Nginx中,事件驱动模型是其高效处理并发连接的
- 【30天玩转python】项目实战:从零开始开发一个Python项目
爱技术的小伙子
30天玩转pythonlinux运维服务器
项目实战:从零开始开发一个Python项目在学习Python的过程中,开发一个完整的项目是非常重要的实战练习。它不仅能够帮助你巩固所学的知识,还能提高实际编程能力。本文将带领你从零开始开发一个Python项目,介绍从项目规划、环境搭建、代码实现到项目发布的完整过程。我们将以一个简单的“任务管理系统”为例,逐步讲解如何构建、测试和优化这个项目。1.项目规划1.1项目简介我们将开发一个基于命令行的任务
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- flink+kafka实现流数据处理学习
上海研博数据
java
在应用系统的建设过程中,通常都会遇到需要实时处理数据的场景,处理实时数据的框架有很多,本文将以一个示例来介绍flink+kafka在流数据处理中的应用。1、概念介绍flink:是一个分布式、高可用、高可靠的大数据处理引擎,提供了一种高效、可靠、可扩展的方式来处理和分析实时数据。kafka:是用于构建实时数据管道和流应用程序并具有横向扩展,容错,wickedfast(变态快)等优点的一种消息中间件。
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Elasticsearch 入门教学:从零开始掌握分布式搜索引擎
格子先生Lab
搜索引擎elasticsearch分布式
引言Elasticsearch是一个开源的分布式搜索引擎,基于ApacheLucene构建,能够实现近乎实时的数据搜索和分析。它广泛应用于日志分析、全文搜索、数据可视化等场景。本文将带你从零开始学习Elasticsearch,掌握其基本概念、安装配置、数据操作及搜索功能。1.Elasticsearch简介1.1什么是Elasticsearch?Elasticsearch是一个分布式的RESTful
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- 递推和递归_一文学会递归递推
HR刀姐
递推和递归
递归算法和递推算法无论是在ACM竞赛还是项目工程上都有着极为广泛的应用,但想要完全掌握两者的思想并不容易,对于刚刚接触编程的人来说更是这样,我在初次接触递归递推时就吃了很多的苦头,除了当时对编程语言不太熟悉之外,最大的原因就是难以理解其中的思想,本文将二者结合代码分别讲解,力求以"理论+实践"的方式使读者明白两种算法。一箭双雕,一文双递。一.递归和递推的区别学习递归递推的一个容易遇到的问题就是混淆
- ZooKeeper学习总结(1)——ZooKeeper入门介绍
一杯甜酒
ZooKeeper学习总结Zookeeper
1.概述Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务、名字服务、分布式同步、组服务等。它有如下的一些特点:简单Zookeeper的核心是一个精简的文件系统,它支持一些简单的操作和一些抽象操作,例如,排序和通知。丰富Zookeeper的原语操作是很丰富的,可实现一些协调数据结构和协议。例如,分布式队列、分布式锁和一组同级别节点中的“领导者选举
- Zookeeper+kafka学习笔记
CHR_YTU
Zookeeper
Zookeeper是Apache的一个java项目,属于Hadoop系统,扮演管理员的角色。配置管理分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。Zookeeper提供了这样的一种服务:一种集
- Zookeeper【概念(集中式到分布式、什么是分布式 、CAP定理 、什么是Zookeeper、应用场景、为什么选择Zookeeper 、基本概念) 】(一)-全面详解(学习总结---从入门到深化)
童小纯
中间件大全---全面详解zookeeper分布式
作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步如果感觉博主的文章还不错的话,请三连支持一下博主哦博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人目录Zookeeper概念_集中式到分布
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发引言在HarmonyNext生态系统中,ArkTS作为新一代的编程语言,为开发者提供了强大的工具来构建高性能、跨平台的应用。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的音视频处理应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的特性,结合ArkTS的强大功能,实现复杂
- Solana中的程序派生地址(PDAs):是什么,为什么,以及如何?
GTokenTool发币平台
区块链
程序派生地址(PDA)在Solana中的应用:什么、为什么和如何?在学习Solana时,你会经常听到关于程序派生地址(PDAs)的讨论。它们就像这样——强大、多功能,而且最重要的是,稍微被误解。如果你是一个开发者,试图理解它们,不用担心。我们将在本文中一起揭开PDAs的面纱。在本文中,我将从基础开始解释PDAs,假设你刚刚开始接触Solana。因此,不需要任何先前的知识——让我们开始吧。什么是PD
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- Zookeeper学习
种豆走天下
zookeeper学习分布式
Zookeeper是一个开源的分布式协调框架,它主要用于处理分布式系统中的一些常见问题,如同步、配置管理、命名服务和集群管理等。Zookeeper是由Apache提供的,并且广泛应用于各种分布式应用中,特别是在高可用、高可靠性和高性能的系统中。Zookeeper的主要功能分布式协调:Zookeeper提供了协调多个节点(服务器)间行为的机制。例如,分布式锁、选举、配置管理等。命名服务:Zookee
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- GO语言学习笔记
螺旋式上升abc
golang学习笔记
一、viper笔记【七米】https://liwenzhou.com/posts/Go/viper/二、优雅关机和平滑重启https://liwenzhou.com/posts/Go/graceful-shutdown/三、gin使用zaphttps://liwenzhou.com/posts/Go/zap-in-gin/四、flag用于命令行传参https://liwenzhou.com/pos
- 《Quick Start Kubernetes》读后感
python
一、为什么选择这本书?面试的时候经常被问到kubernetes(下称k8s),所以打算学习k8s。看到《QuickStartKubernetes》的作者对自己所写的书持续地更新,被这种认真打动了,外加这本书只有100多页,所以选择了这本书作为入门k8s的教材。二、这本书写了什么?这本书介绍了什么是k8s,k8s的组成结构(controlplanenode,workernode),演示了在Windo
- 有趣的学习Python-第十篇:Python的“魔法宝库”:标准库之旅
王盼达
有趣的学习Python学习python开发语言
Python不仅是一门强大的编程语言,更像是一座充满宝藏的“魔法宝库”,里面装满了各种各样的“魔法工具”(标准库)。这些“魔法工具”可以帮助你轻松地完成各种任务,从文件操作到网络编程,从数据处理到性能优化。接下来,让我们一起探索Python的“魔法宝库”,看看这些“魔法工具”到底有多神奇!10.1操作系统接口:与“魔法世界”互动os模块就像是一个“魔法接口”,可以帮助你与操作系统进行互动。你可以用
- 有趣的学习Python-第八篇:Python的“魔法盾牌”:错误与异常处理
王盼达
有趣的学习Python学习python开发语言
在Python的魔法世界里,即使是经验丰富的魔法师也可能遇到一些“魔法失误”。这些失误分为两种:语法错误和异常。别担心,Python为你准备了一面强大的“魔法盾牌”,帮助你应对这些挑战。8.1语法错误:魔法咒语写错了语法错误就像是你在念魔法咒语时,不小心说错了单词。这是学习Python过程中最常见的问题。比如,你可能忘记在while循环后面加上冒号:whileTrueprint('Hellowor
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- 机器学习(Machine Learning)
七指琴魔御清绝
大数据学习
原文链接:http://blog.csdn.net/zhoubl668/article/details/42921187希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Ada
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla