自然场景下的文本检测和识别 EAST text detector and recognition

自然场景下的文本检测和识别 EAST text detector and recognition

最近在做巡检机器人和仪表识别算法,巡检机器人拍摄的照片除了指针仪表和状态灯以外,还有一部分是数字显示的仪表,这样对仪表的数值的识别就需要后台代码具备检测文本和识别的功能了.
另外,一些项目中也有对移动的车厢或者罐子上的编号做识别处理,这样一套算法就可以搞定这些问题了.

仪表面板

铁罐编号1

铁罐编号2

1. EAST text detector 模型

自然场景下的文本检测模型,参考了 Zhou et al.的在arxiv上的论文方法. 论文链接

  • 使用ResNet-50残差网络作为基础.
  • 使用dice loss 损失函数.
  • 使用了 AdamW 优化器.
模型定义如下
import keras
from keras import layers, Input, Model
import tensorflow as tf
from east.layers.base_net import resnet50
from east.layers.losses import balanced_cross_entropy, iou_loss, angle_loss
from east.layers.rbox import dist_to_box


def merge_block(f_pre, f_cur, out_channels, index):
    """
    east网络特征合并块
    :param f_pre:
    :param f_cur:
    :param out_channels:输出通道数
    :param index:block index
    :return:
    """
    # 上采样
    up_sample = layers.UpSampling2D(size=2, name="east_up_sample_f{}".format(index - 1))(f_pre)
    # 合并
    merge = layers.Concatenate(name='east_merge_{}'.format(index))([up_sample, f_cur])
    # 1*1 降维
    x = layers.Conv2D(out_channels, (1, 1), padding='same', name='east_reduce_channel_conv_{}'.format(index))(merge)
    x = layers.BatchNormalization(name='east_reduce_channel_bn_{}'.format(index))(x)
    x = layers.Activation(activation='relu', name='east_reduce_channel_relu_{}'.format(index))(x)
    # 3*3 提取特征
    x = layers.Conv2D(out_channels, (3, 3), padding='same', name='east_extract_feature_conv_{}'.format(index))(x)
    x = layers.BatchNormalization(name='east_extract_feature_bn_{}'.format(index))(x)
    x = layers.Activation(activation='relu', name='east_extract_feature_relu_{}'.format(index))(x)
    return x


def east(features):
    """
    east网络头
    :param features: 特征列表: f1, f2, f3, f4分别代表32,16,8,4倍下采样的特征
    :return:
    """
    f1, f2, f3, f4 = features
    # 特征合并分支
    h2 = merge_block(f1, f2, 128, 2)
    h3 = merge_block(h2, f3, 64, 3)
    h4 = merge_block(h3, f4, 32, 4)
    # 提取g4特征
    x = layers.Conv2D(32, (3, 3), padding='same', name='east_g4_conv')(h4)
    x = layers.BatchNormalization(name='east_g4_bn')(x)
    x = layers.Activation(activation='relu', name='east_g4_relu')(x)

    # 预测得分
    predict_score = layers.Conv2D(1, (1, 1), name='predict_score_map')(x)
    # 预测距离
    predict_geo_dist = layers.Conv2D(4, (1, 1), activation='relu', name='predict_geo_dist')(x)  # 距离必须大于零
    # 预测角度
    predict_geo_angle = layers.Conv2D(1, (1, 1), name='predict_geo_angle')(x)

    return predict_score, predict_geo_dist, predict_geo_angle


def east_net(config, stage='train'):
    # 输入
    h, w = list(config.IMAGE_SHAPE)[:2]
    h, w = h / 4, w / 4
    input_image = Input(shape=config.IMAGE_SHAPE, name='input_image')
    input_score_map = Input(shape=(h, w), name='input_score')
    input_geo_dist = Input(shape=(h, w, 4), name='input_geo_dist')  # rbox 4个边距离
    input_geo_angle = Input(shape=(h, w), name='input_geo_angle')  # rbox 角度
    input_mask = Input(shape=(h, w), name='input_mask')
    input_image_meta = Input(shape=(12,), name='input_image_meta')

    # 网络
    features = resnet50(input_image)
    predict_score, predict_geo_dist, predict_geo_angle = east(features)

    if stage == 'train':
        # 增加损失函数层
        score_loss = layers.Lambda(lambda x: balanced_cross_entropy(*x), name='score_loss')(
            [input_score_map, predict_score, input_mask])
        geo_dist_loss = layers.Lambda(lambda x: iou_loss(*x), name='dist_loss')(
            [input_geo_dist, predict_geo_dist, input_score_map, input_mask])
        geo_angle_loss = layers.Lambda(lambda x: angle_loss(*x), name='angle_loss')(
            [input_geo_angle, predict_geo_angle, input_score_map, input_mask])

        return Model(inputs=[input_image, input_score_map, input_geo_dist, input_geo_angle, input_mask],
                     outputs=[score_loss, geo_dist_loss, geo_angle_loss])
    else:
        # 距离和角度转为顶点坐标
        vertex = layers.Lambda(lambda x: dist_to_box(*x))([predict_geo_dist, predict_geo_angle])
        # dual image_meta
        image_meta = layers.Lambda(lambda x: tf.identity(x))(input_image_meta)  # 原样返回
        predict_score = layers.Lambda(lambda x: tf.nn.sigmoid(x))(predict_score)  # logit转为score
        return Model(inputs=[input_image, input_image_meta],
                     outputs=[predict_score, vertex, image_meta])


def compile(keras_model, config, loss_names=[]):
    """
    编译模型,增加损失函数,L2正则化以
    :param keras_model:
    :param config:
    :param loss_names: 损失函数列表
    :return:
    """
    # 优化目标
    optimizer = keras.optimizers.SGD(
        lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM,
        clipnorm=config.GRADIENT_CLIP_NORM)
    # 增加损失函数,首先清除之前的,防止重复
    keras_model._losses = []
    keras_model._per_input_losses = {}

    for name in loss_names:
        layer = keras_model.get_layer(name)
        if layer is None or layer.output in keras_model.losses:
            continue
        loss = (tf.reduce_mean(layer.output, keepdims=True)
                * config.LOSS_WEIGHTS.get(name, 1.))
        keras_model.add_loss(loss)

    # 增加L2正则化
    # 跳过批标准化层的 gamma 和 beta 权重
    reg_losses = [
        keras.regularizers.l2(config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)
        for w in keras_model.trainable_weights
        if 'gamma' not in w.name and 'beta' not in w.name]
    keras_model.add_loss(tf.add_n(reg_losses))

    # 编译
    keras_model.compile(
        optimizer=optimizer,
        loss=[None] * len(keras_model.outputs))  # 使用虚拟损失

    # 为每个损失函数增加度量
    for name in loss_names:
        if name in keras_model.metrics_names:
            continue
        layer = keras_model.get_layer(name)
        if layer is None:
            continue
        keras_model.metrics_names.append(name)
        loss = (
                tf.reduce_mean(layer.output, keepdims=True)
                * config.LOSS_WEIGHTS.get(name, 1.))
        keras_model.metrics_tensors.append(loss)


def add_metrics(keras_model, metric_name_list, metric_tensor_list):
    """
    增加度量
    :param keras_model: 模型
    :param metric_name_list: 度量名称列表
    :param metric_tensor_list: 度量张量列表
    :return: 无
    """
    for name, tensor in zip(metric_name_list, metric_tensor_list):
        keras_model.metrics_names.append(name)
        keras_model.metrics_tensors.append(tf.reduce_mean(tensor, keepdims=True))

2. 文本识别

EAST text detector实现了文本定位和检测,下一步需要对检测的文本做识别处理

将图像中的文字转化为真正的文本,就需要用到OCR的技术。OCR领域最著名的、最主流的开源实现是Tesseract-OCR,鉴于本次识别的都是印刷体和简单的数字,直接采用google成熟的OCR识别工具集tesseract-ocr就可以了,尤其是当Tesseract-OCR已经升级到了4.0版本。和传统的版本(3.x)比,4.0时代最突出的变化就是基于LSTM神经网络。

3. 整合成端到端的代码 end to end

把EAST text detector 和 tesseract-ocr整合到一套代码中实现端到端的解决方案,实现图片的文字检测,分割和识别输出的一系列操作.

仪表面板

铁罐编号1

铁罐编号2

你可能感兴趣的:(自然场景下的文本检测和识别 EAST text detector and recognition)