以下是一个基础版本的 Swin Transformer(Swin-B)加上特征金字塔网络(FPN)实现渐进融合的简化代码。请注意,这是一个简化版本,可能需要根据具体需求进行调整和优化。
import torch
import torch.nn as nn
import torch.nn.functional as F
# Swin Transformer Block
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, heads, head_dim, mlp_dim, dropout=0.0):
super(SwinTransformerBlock, self).__init__()
self.attention = nn.MultiheadAttention(dim, heads, dropout=dropout)
self.norm1 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, dim),
nn.Dropout(dropout)
)
self.norm2 = nn.LayerNorm(dim)
def forward(self, x):
attention_output, _ = self.attention(x, x, x)
x = x + attention_output
x = self.norm1(x)
mlp_output = self.mlp(x)
x = x + mlp_output
x = self.norm2(x)
return x
# Swin Transformer Backbone
class SwinTransformer(nn.Module):
def __init__(self, image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, dropout=0.0):
super(SwinTransformer, self).__init__()
self.patch_embed = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
self.pos_embed = nn.Parameter(torch.zeros(1, (image_size // patch_size) ** 2 + 1, embed_dim))
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=embed_dim, heads=heads, head_dim=embed_dim // heads, mlp_dim=mlp_dim, dropout=dropout)
for _ in range(depths)
])
self.norm = nn.LayerNorm(embed_dim)
self.fc = nn.Linear(embed_dim, num_classes)
def forward(self, x):
x = self.patch_embed(x)
B, C, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
for block in self.blocks:
x = block(x)
x = self.norm(x)
cls_tokens = x[:, 0]
output = self.fc(cls_tokens)
return output
# Feature Pyramid Network Block
class FPNBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(FPNBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.up_sample = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
return self.conv(self.up_sample(x))
# Swin Transformer with Feature Pyramid Network (FPN)
class SwinTransformerWithFPN(nn.Module):
def __init__(self, image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, fpn_channels, dropout=0.0):
super(SwinTransformerWithFPN, self).__init__()
# Swin Transformer
self.swin = SwinTransformer(image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, dropout)
# FPN Blocks
self.fpn_block1 = FPNBlock(embed_dim, fpn_channels)
self.fpn_block2 = FPNBlock(embed_dim, fpn_channels)
self.fpn_block3 = FPNBlock(embed_dim, fpn_channels)
# Classifier
self.classifier = nn.Linear(fpn_channels, num_classes)
def forward(self, x):
# Swin Transformer
features = self.swin(x)
# FPN
fpn_feature1 = self.fpn_block1(features.blocks[-3])
fpn_feature2 = self.fpn_block2(features.blocks[-4])
fpn_feature3 = self.fpn_block3(features.blocks[-5])
# Combine FPN features
fused_feature = fpn_feature1 + fpn_feature2 + fpn_feature3
# Global Average Pooling
global_pooling = torch.mean(fused_feature, dim=[2, 3])
# Classifier
output = self.classifier(global_pooling)
return output
# 创建 Swin Transformer + FPN 模型
swin_fpn_model = SwinTransformerWithFPN(
image_size=224,
patch_size=4,
in_channels=3,
num_classes=1000,
embed_dim=96,
depths=12,
heads=4,
mlp_dim=384,
fpn_channels=64,
dropout=0.0
)
# 打印模型结构
print(swin_fpn_model)
这个代码示例定义了一个简化版本的 Swin Transformer 和 FPN 结合的模型。你可以根据需要调整 Swin Transformer 和 FPNBlock 的通道数以适应你的任务。确保你的输入图像尺寸和通道数与模型定义中的一致。