数组是一种线性数据结构,它将相同类型的元素存储在连续的内存空间中。
我们将元素在数组中的位置称为该元素的索引。
我们可以根据需求选用数组的两种初始化方式:无初始值、给定初始值。在未指定初始值的情况下,大多数编程语言会将数组元素初始化为 0 。
/* 初始化数组 */
int[] arr = new int[5]; // { 0, 0, 0, 0, 0 }
int[] nums = { 1, 3, 2, 5, 4 };
数组元素被存储在连续的内存空间中,这意味着计算数组元素的内存地址非常容易。
给定数组内存地址(即首元素内存地址)和某个元素的索引,我们可以使用下图所示的公式计算得到该元素的内存地址,从而直接访问此元素。
我们发现数组首个元素的索引为 0 ,这似乎有些反直觉,因为从 1 开始计数会更自然。但从地址计算公式的角度看,索引的含义本质上是内存地址的偏移量。首个元素的地址偏移量是 0 ,因此它的索引为 0 也是合理的。
在数组中访问元素是非常高效的,我们可以在 (1) 时间内随机访问数组中的任意一个元素。
/* 随机访问元素 */
int randomAccess(int[] nums) {
// 在区间 [0, nums.length) 中随机抽取一个数字
int randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);
// 获取并返回随机元素
int randomNum = nums[randomIndex];
return randomNum;
}
数组元素在内存中是 紧挨着的 ,它们之间没有空间再存放任何数据。如图所示,如果想要在数组中间插入一个元素,则需要将该元素之后的所有元素都向后移动一位,之后再把元素赋值给该索引。
值得注意的是,由于数组的长度是固定的,因此插入一个元素必定会导致数组尾部元素的“丢失”。
/* 在数组的索引 index 处插入元素 num */
void insert(int[] nums, int num, int index) {
// 把索引 index 以及之后的所有元素向后移动一位
for (int i = nums.length - 1; i > index; i--) {
nums[i] = nums[i - 1];
}
// 将 num 赋给 index 处元素
nums[index] = num;
}
同理,如图所示,若想要删除索引 处的元素,则需要把索引 之后的元素都向前移动一位。
请注意,删除元素完成后,原先末尾的元素变得“无意义”了,所以我们无须特意去修改它。
/* 删除索引 index 处元素 */
void remove(int[] nums, int index) {
// 把索引 index 之后的所有元素向前移动一位
for (int i = index; i < nums.length - 1; i++) {
nums[i] = nums[i + 1];
}
}
总的来看,数组的插入与删除操作有以下缺点:
在大多数编程语言中,我们既可以通过索引遍历数组,也可以直接遍历获取数组中的每个元素。
/* 遍历数组 */
void traverse(int[] nums) {
int count = 0;
// 通过索引遍历数组
for (int i = 0; i < nums.length; i++) {
count++;
}
// 直接遍历数组
for (int num : nums) {
count++;
}
}
在数组中查找指定元素需要遍历数组,每轮判断元素值是否匹配,若匹配则输出对应索引。
因为数组是线性数据结构,所以上述查找操作被称为线性查找。
/* 在数组中查找指定元素 */
int find(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] == target)
return i;
}
return -1;
}
在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在大多数编程语言中,数组的长度是不可变的。
如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次拷贝到新数组。这是一个() 的操作,在数组很大的情况下是非常耗时的。
/* 扩展数组长度 */
int[] extend(int[] nums, int enlarge) {
// 初始化一个扩展长度后的数组
int[] res = new int[nums.length + enlarge];
// 将原数组中的所有元素复制到新数组
for (int i = 0; i < nums.length; i++) {
res[i] = nums[i];
}
// 返回扩展后的新数组
return res;
}
数组存储在连续的内存空间内,且元素类型相同。这种做法包含丰富的先验信息,系统可以利用这些信息来优化数据结构的操作效率。
有以下优点:
以下缺点:
数组是一种基础且常见的数据结构,既频繁应用在各类算法之中,也可用于实现各种复杂数据结构。
如:
链表是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“节点指针”相连接。
节点指针记录了下一个节点的内存地址,通过它可以从当前节点访问到下一个节点。
链表的设计使得各个节点可以被分散存储在内存各处,它们的内存地址是无须连续的。
链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“指针”。
链表节点 ListNode 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间。
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向下一节点的引用
// 构造函数
ListNode(int x) {
val = x;
}
}
建立链表分为两步,第一步是初始化各个节点对象,第二步是构建引用指向关系。
初始化完成后,我们就可以从链表的头节点出发,通过引用指向 next 依次访问所有节点。
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
数组整体是一个变量,比如数组 nums 包含元素 nums[0] 和 nums[1] 等,而链表是由多个独立的节点对象组成的。
我们通常将头节点当作链表的代称,比如以上代码中的链表可被记做链表 n0 。
在链表中插入节点非常容易。如图所示,假设我们想在相邻的两个节点 n0 和 n1 之间插入一个新节点 P ,则只需要改变两个节点引用(指针)即可,时间复杂度为 (1) 。
相比之下,在数组中插入元素的时间复杂度为 () ,在大数据量下的效率较低。
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode n0, ListNode P) {
ListNode n1 = n0.next;
P.next = n1;
n0.next = P;
}
如图所示,在链表中删除节点也非常方便,只需改变一个节点的引用(指针)即可。
请注意,尽管在删除操作完成后节点 P 仍然指向 n1 ,但实际上遍历此链表已经无法访问到 P ,这意味着 P 已经不再属于该链表了。
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode n0) {
if (n0.next == null) return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode n1 = P.next;
n0.next = n1;
}
在链表访问节点的效率较低。
如上所述,我们可以在 (1) 时间下访问数组中的任意元素。
链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 个节点需要循环 − 1轮,时间复杂度为 () 。
/* 访问链表中索引为 index 的节点 */
ListNode access(ListNode head, int index) {
for (int i = 0; i < index; i++) {
if (head == null)
return null;
head = head.next;
}
return head;
}
遍历链表,查找链表内值为 target 的节点,输出节点在链表中的索引。此过程也属于线性查找。
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode head, int target) {
int index = 0;
while (head != null) {
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
常见的链表类型包括以下三种:
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
ListNode(int x) { val = x; } // 构造函数
}
单向链表通常用于实现栈、队列、哈希表和图等数据结构。
双向链表常被用于需要快速查找前一个和下一个元素的场景。
循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。
下图总结对比了数组和链表的各项特点与操作效率。
由于它们采用两种相反的存储策略,因此各种性质和操作效率也呈现对立的特点。
列表是一个抽象的数据结构概念,它表示元素的有序集合,支持元素访问、修改、添加、删除和遍历等操作,无需使用者考虑容量限制的问题。
列表可以基于链表或数组实现:
当使用数组实现列表时,长度不可变的性质会导致列表的实用性降低。这是因为我们通常无法事先确定需要存储多少数据,从而难以选择合适的列表长度。
若长度过小,则很可能无法满足使用需求;
若长度过大,则会造成内存空间的浪费。
为解决此问题,我们可以使用「动态数组 dynamic array」来实现列表。它继承了数组的各项优点,并且可以在程序运行过程中进行动态扩容。
实际上,许多编程语言中的标准库提供的列表都是基于动态数组实现的,例如 Python 中的 list 、Java 中的 ArrayList 、C++ 中的 vector 和 C# 中的 List 等。
我们通常使用“无初始值”和“有初始值”这两种初始化方法。
/* 初始化列表 */
// 无初始值
List<Integer> nums1 = new ArrayList<>();
// 有初始值(注意数组的元素类型需为 int[] 的包装类 Integer[])
Integer[] numbers = new Integer[] { 1, 3, 2, 5, 4 };
List<Integer> nums = new ArrayList<>(Arrays.asList(numbers));
列表本质上是数组,因此可以在 (1) 时间内访问和更新元素,效率很高。
/* 访问元素 */
int num = nums.get(1); // 访问索引 1 处的元素
/* 更新元素 */
nums.set(1, 0); // 将索引 1 处的元素更新为 0
相较于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为 (1) ,但插入和删除元素的效率仍与数组相同,时间复杂度为 () 。
/* 清空列表 */
nums.clear();
/* 尾部添加元素 */
nums.add(1);
nums.add(3);
nums.add(2);
nums.add(5);
nums.add(4);
/* 中间插入元素 */
nums.add(3, 6); // 在索引 3 处插入数字 6
/* 删除元素 */
nums.remove(3); // 删除索引 3 处的元素
与数组一样,列表可以根据索引遍历,也可以直接遍历各元素。
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count++;
}
/* 直接遍历列表元素 */
count = 0;
for (int num : nums) {
count++;
}
给定一个新列表 nums1 ,我们可以将该列表拼接到原列表的尾部。
/* 拼接两个列表 */
List<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));
nums.addAll(nums1); // 将列表 nums1 拼接到 nums 之后
完成列表排序后,我们便可以使用在数组类算法题中经常考察的“二分查找”和“双指针”算法。
/* 排序列表 */
Collections.sort(nums); // 排序后,列表元素从小到大排列
下面实现一个简易版列表,包括以下三个重点设计:
/* 列表类简易实现 */
class MyList {
private int[] arr; // 数组(存储列表元素)
private int capacity = 10; // 列表容量
private int size = 0; // 列表长度(即当前元素数量)
private int extendRatio = 2; // 每次列表扩容的倍数
/* 构造方法 */
public MyList() {
arr = new int[capacity];
}
/* 获取列表长度(即当前元素数量) */
public int size() {
return size;
}
/* 获取列表容量 */
public int capacity() {
return capacity;
}
/* 访问元素 */
public int get(int index) {
// 索引如果越界则抛出异常,下同
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(" 索引越界");
return arr[index];
}
/* 更新元素 */
public void set(int index, int num) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(" 索引越界");
arr[index] = num;
}
/* 尾部添加元素 */
public void add(int num) {
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity();
arr[size] = num;
// 更新元素数量
size++;
}
/* 中间插入元素 */
public void insert(int index, int num) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(" 索引越界");
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (int j = size - 1; j >= index; j--) {
arr[j + 1] = arr[j];
}
arr[index] = num;
// 更新元素数量
size++;
}
/* 删除元素 */
public int remove(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(" 索引越界");
int num = arr[index];
// 将索引 index 之后的元素都向前移动一位
for (int j = index; j < size - 1; j++) {
arr[j] = arr[j + 1];
}
// 更新元素数量
size--;
// 返回被删除元素
return num;
}
/* 列表扩容 */
public void extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组拷贝到新数组
arr = Arrays.copyOf(arr, capacity() * extendRatio);
// 更新列表容量
capacity = arr.length;
}
/* 将列表转换为数组 */
public int[] toArray() {
int size = size();
// 仅转换有效长度范围内的列表元素
int[] arr = new int[size];
for (int i = 0; i < size; i++) {
arr[i] = get(i);
}
return arr;
}
}
存储在栈上和堆上的数组都被存储在连续内存空间内,数据操作效率是基本一致的。然而,栈
和堆具有各自的特点,从而导致以下不同点:
链表由节点组成,节点之间通过引用(指针)连接,各个节点可以存储不同类型的数据,
例如 int、double、string、object 等。
相对地,数组元素则必须是相同类型的,这样才能通过计算偏移量来获取对应元素位置。例如,如果数组同时包含 int 和 long 两种类型,单个元素分别占用 4 bytes 和 8 bytes ,那么此时就不能用以下公式计算偏移量了,因为数组中包含了两种长度的元素。
元素内存地址 = 数组内存地址 + 元素长度 * 元素索引
不修改 P.next 也可以。从该链表的角度看,从头节点遍历到尾节点已经遇不到 P 了。这意味着节点 P 已经从链表中删除了,此时节点 P 指向哪里都不会对这条链表产生影响了。
从垃圾回收的角度看,对于 Java、Python、Go 等拥有自动垃圾回收的语言来说,节点 P 是否被回收取决于是否有仍存在指向它的引用,而不是 P.next 的值。在 C 和 C++ 等语言中,我们需要手动释放节点内存。
如果是先查找元素、再删除元素,确实是 () 。然而,链表的 (1) 增删的优势可以在其他应用上得到体现。
例如,双向队列适合使用链表实现,我们维护一个指针变量始终指向头节点、尾节点,每次插入与删除操作都是 (1) 。
文中的示意图只是定性表示,定量表示需要根据具体情况进行分析。
如果添加元素时超出列表长度,则需要先扩容列表再添加。系统会申请一块新的内存,并将原列表的所有元素搬运过去,这时候时间复杂度就会是 () 。
这里的空间浪费主要有两方面含义:
一方面,列表都会设定一个初始长度,我们不一定需要用这么多。
另一方面,为了防止频繁扩容,扩容一般都会乘以一个系数,比如 ×1.5 。这样一来,也会出现很多空位,我们通常不能完全填满它们。
一方面,我们往往更青睐使用数组实现算法,而只有在必要时才使用链表,主要有两个原因:
另一方面,必要使用链表的情况主要是二叉树和图。栈和队列往往会使用编程语言提供的stack 和 queue ,而非链表。
不会。但二维数组会有这个问题,例如初始化二维列表 res = [ [ 0 ] * self.size ( ) ] ,则多次引用了同一个列表 [ 0 ] 。
从数据结构与算法(做题)的角度看,不断开没有关系,只要保证程序的逻辑是正确的就行。
从标准库的角度看,断开更加安全、逻辑更加清晰。如果不断开,假设被删除节点未被正常回收,那么它也会影响后继节点的内存回收。