......
Connected to the target VM, address: '127.0.0.1:49723', transport: 'socket'
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
19/09/27 15:32:47 INFO SparkContext: Running Spark version 2.2.0
19/09/27 15:32:47 WARN SparkConf: spark.master yarn-client is deprecated in Spark 2.0+, please instead use "yarn" with specified deploy mode.
19/09/27 15:32:47 INFO SparkContext: Submitted application: Remote_Submit_App
19/09/27 15:32:47 INFO SecurityManager: Changing view acls to: 110610172
19/09/27 15:32:47 INFO SecurityManager: Changing modify acls to: 110610172
19/09/27 15:32:47 INFO SecurityManager: Changing view acls groups to:
19/09/27 15:32:47 INFO SecurityManager: Changing modify acls groups to:
19/09/27 15:32:47 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(110610172); groups with view permissions: Set(); users with modify permissions: Set(110610172); groups with modify permissions: Set()
19/09/27 15:32:48 INFO Utils: Successfully started service 'sparkDriver' on port 49747.
19/09/27 15:32:48 INFO SparkEnv: Registering MapOutputTracker
19/09/27 15:32:48 INFO SparkEnv: Registering BlockManagerMaster
19/09/27 15:32:48 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
19/09/27 15:32:48 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
19/09/27 15:32:48 INFO DiskBlockManager: Created local directory at C:\Users\110610172\AppData\Local\Temp\blockmgr-c580e3ec-3b0f-4365-8766-387e0c4a3947
19/09/27 15:32:48 INFO MemoryStore: MemoryStore started with capacity 1989.6 MB
19/09/27 15:32:48 INFO SparkEnv: Registering OutputCommitCoordinator
19/09/27 15:32:48 INFO Utils: Successfully started service 'SparkUI' on port 4040.
19/09/27 15:32:48 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.1.26:4040
19/09/27 15:32:48 INFO SparkContext: Added JAR E:\RemoteSubmitSparkToYarn\target\RemoteSubmitSparkToYarn-1.0-SNAPSHOT.jar at spark://192.168.1.26:49747/jars/RemoteSubmitSparkToYarn-1.0-SNAPSHOT.jar with timestamp 1569569568596
19/09/27 15:32:50 INFO ConfiguredRMFailoverProxyProvider: Failing over to rm381
19/09/27 15:32:50 INFO Client: Requesting a new application from cluster with 7 NodeManagers
19/09/27 15:32:50 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (12288 MB per container)
19/09/27 15:32:50 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
19/09/27 15:32:50 INFO Client: Setting up container launch context for our AM
19/09/27 15:32:50 INFO Client: Setting up the launch environment for our AM container
19/09/27 15:32:50 INFO Client: Preparing resources for our AM container
19/09/27 15:32:51 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
19/09/27 15:32:54 INFO Client: Uploading resource file:/C:/Users/110610172/AppData/Local/Temp/spark-46819e6c-4520-4e75-b7b0-0374e0020d36/__spark_libs__4420363360244802432.zip -> hdfs://cdh01:8020/user/110610172/.sparkStaging/application_1568096913481_0456/__spark_libs__4420363360244802432.zip
19/09/27 15:32:54 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
19/09/27 15:32:57 INFO Client: Uploading resource file:/C:/Users/110610172/AppData/Local/Temp/spark-46819e6c-4520-4e75-b7b0-0374e0020d36/__spark_conf__4989294758151956703.zip -> hdfs://cdh01:8020/user/110610172/.sparkStaging/application_1568096913481_0456/__spark_conf__.zip
19/09/27 15:32:57 INFO SecurityManager: Changing view acls to: 110610172
19/09/27 15:32:57 INFO SecurityManager: Changing modify acls to: 110610172
19/09/27 15:32:57 INFO SecurityManager: Changing view acls groups to:
19/09/27 15:32:57 INFO SecurityManager: Changing modify acls groups to:
19/09/27 15:32:57 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(110610172); groups with view permissions: Set(); users with modify permissions: Set(110610172); groups with modify permissions: Set()
19/09/27 15:32:57 INFO Client: Submitting application application_1568096913481_0456 to ResourceManager
19/09/27 15:32:57 INFO YarnClientImpl: Submitted application application_1568096913481_0456
19/09/27 15:32:57 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1568096913481_0456 and attemptId None
19/09/27 15:32:58 INFO Client: Application report for application_1568096913481_0456 (state: ACCEPTED)
19/09/27 15:32:58 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.users.110610172
start time: 1569569577390
final status: UNDEFINED
tracking URL: http://cdh02:8088/proxy/application_1568096913481_0456/
user: 110610172
19/09/27 15:32:59 INFO Client: Application report for application_1568096913481_0456 (state: ACCEPTED)
19/09/27 15:33:00 INFO Client: Application report for application_1568096913481_0456 (state: ACCEPTED)
19/09/27 15:33:01 INFO Client: Application report for application_1568096913481_0456 (state: ACCEPTED)
19/09/27 15:33:01 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark-client://YarnAM)
19/09/27 15:33:01 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> cdh01,cdh02, PROXY_URI_BASES -> http://cdh01:8088/proxy/application_1568096913481_0456,http://cdh02:8088/proxy/application_1568096913481_0456), /proxy/application_1568096913481_0456
19/09/27 15:33:01 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
19/09/27 15:33:02 INFO Client: Application report for application_1568096913481_0456 (state: RUNNING)
19/09/27 15:33:02 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 10.101.75.194
ApplicationMaster RPC port: 0
queue: root.users.110610172
start time: 1569569577390
final status: UNDEFINED
tracking URL: http://cdh02:8088/proxy/application_1568096913481_0456/
user: 110610172
19/09/27 15:33:02 INFO YarnClientSchedulerBackend: Application application_1568096913481_0456 has started running.
19/09/27 15:33:02 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 49796.
19/09/27 15:33:02 INFO NettyBlockTransferService: Server created on 192.168.1.26:49796
19/09/27 15:33:02 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
19/09/27 15:33:02 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.1.26, 49796, None)
19/09/27 15:33:02 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.1.26:49796 with 1989.6 MB RAM, BlockManagerId(driver, 192.168.1.26, 49796, None)
19/09/27 15:33:02 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.1.26, 49796, None)
19/09/27 15:33:02 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.1.26, 49796, None)
19/09/27 15:33:07 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.101.75.190:10332) with ID 1
19/09/27 15:33:07 INFO BlockManagerMasterEndpoint: Registering block manager cdh04:24916 with 246.9 MB RAM, BlockManagerId(1, cdh04, 24916, None)
19/09/27 15:33:07 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.101.75.190:10334) with ID 2
19/09/27 15:33:08 INFO BlockManagerMasterEndpoint: Registering block manager cdh04:27337 with 246.9 MB RAM, BlockManagerId(2, cdh04, 27337, None)
19/09/27 15:33:08 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
19/09/27 15:33:08 WARN KafkaUtils: overriding enable.auto.commit to false for executor
19/09/27 15:33:08 WARN KafkaUtils: overriding auto.offset.reset to none for executor
19/09/27 15:33:08 WARN KafkaUtils: overriding executor group.id to spark-executor-remote_test
19/09/27 15:33:08 WARN KafkaUtils: overriding receive.buffer.bytes to 65536 see KAFKA-3135
-------------------------------------------
Time: 1569569610000 ms
-------------------------------------------
(assigned,10)
(serializer,2)
(Setting,10)
(rdd.count(),1)
(class,2)
(=,2)
(newly,10)
(partitions,10)
-------------------------------------------
Time: 1569569640000 ms
-------------------------------------------
-------------------------------------------
Time: 1569569670000 ms
-------------------------------------------
......
集群上查看
Yarn --> 应用程序
image
遇到的问题
Spark 版本不一致导致的问题
问题日志:
19/09/27 11:01:38 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message.
java.io.InvalidClassException: org.apache.spark.rpc.RpcEndpointRef; local class incompatible: stream classdesc serialVersionUID = -1329125091869941550, local class serialVersionUID = 1835832137613908542
at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:616)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1630)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1630)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1781)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:108)
at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1$$anonfun$apply$1.apply(NettyRpcEnv.scala:267)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:316)
at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1.apply(NettyRpcEnv.scala:266)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:265)
at org.apache.spark.rpc.netty.RequestMessage$.apply(NettyRpcEnv.scala:600)
at org.apache.spark.rpc.netty.NettyRpcHandler.internalReceive(NettyRpcEnv.scala:651)
at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:643)
at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:178)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:107)
at org.apache.spark.network.server.TransportChannelHandler.channelRead(TransportChannelHandler.java:118)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:343)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:336)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:287)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:343)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:336)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:343)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:336)
at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:85)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:343)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:336)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1294)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:343)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:911)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:643)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:745)
Exception in thread "main" java.lang.IllegalStateException: Library directory 'E:\RemoteSubmitSparkToYarn\assembly\target\scala-2.11\jars' does not exist; make sure Spark is built.
at org.apache.spark.launcher.CommandBuilderUtils.checkState(CommandBuilderUtils.java:248)
at org.apache.spark.launcher.CommandBuilderUtils.findJarsDir(CommandBuilderUtils.java:347)
at org.apache.spark.launcher.YarnCommandBuilderUtils$.findJarsDir(YarnCommandBuilderUtils.scala:38)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:526)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:814)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:169)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.(SparkContext.scala:509)
at org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:839)
at org.apache.spark.streaming.StreamingContext.(StreamingContext.scala:85)
at com.cloudera.RemoteSubmitApp$.main(RemoteSubmitApp.scala:33)
at com.cloudera.RemoteSubmitApp.main(RemoteSubmitApp.scala)
解决办法: 在本地机器中设置 SPARK_HOME 环境变量
image
或在 idea 中运行参数设置 SPARK_HOME
image
权限问题 Permission denied
问题日志:
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=charles, access=WRITE, inode="/user":root:supergroup:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:342)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:251)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1744)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1728)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1687)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:60)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2980)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1096)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:652)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:503)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:868)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:814)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1886)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2603)
解决办法: 在代码中添加下面代码,设置为以 root 用户提交。
System.setProperty("HADOOP_USER_NAME", "root")
/etc/hadoop/conf.cloudera.yarn/topology.py 问题
问题日志:
java.io.IOException: Cannot run program "/etc/hadoop/conf.cloudera.yarn/topology.py" (in directory "E:\RemoteSubmitSparkToYarn"): CreateProcess error=2, 系统找不到指定的文件。
at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)
at org.apache.hadoop.util.Shell.runCommand(Shell.java:519)
at org.apache.hadoop.util.Shell.run(Shell.java:478)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:766)
at org.apache.hadoop.net.ScriptBasedMapping$RawScriptBasedMapping.runResolveCommand(ScriptBasedMapping.java:251)
at org.apache.hadoop.net.ScriptBasedMapping$RawScriptBasedMapping.resolve(ScriptBasedMapping.java:188)
at org.apache.hadoop.net.CachedDNSToSwitchMapping.resolve(CachedDNSToSwitchMapping.java:119)
at org.apache.hadoop.yarn.util.RackResolver.coreResolve(RackResolver.java:101)
at org.apache.hadoop.yarn.util.RackResolver.resolve(RackResolver.java:81)
at org.apache.spark.scheduler.cluster.YarnScheduler.getRackForHost(YarnScheduler.scala:37)
at org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$1.apply(TaskSchedulerImpl.scala:337)
at org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$1.apply(TaskSchedulerImpl.scala:326)
at scala.collection.Iterator$class.foreach(Iterator.scala:742)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1194)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at org.apache.spark.scheduler.TaskSchedulerImpl.resourceOffers(TaskSchedulerImpl.scala:326)
at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint.org$apache$spark$scheduler$cluster$CoarseGrainedSchedulerBackend$DriverEndpoint$$makeOffers(CoarseGrainedSchedulerBackend.scala:237)
at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint$$anonfun$receiveAndReply$1.applyOrElse(CoarseGrainedSchedulerBackend.scala:200)
at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:105)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:205)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:101)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
cationMaster: Failed to connect to driver at 192.168.1.26:34010, retrying ...
19/09/27 15:12:48 ERROR ApplicationMaster: Failed to connect to driver at 192.168.1.26:34010, retrying ...
19/09/27 15:12:48 ERROR ApplicationMaster: Uncaught exception:
org.apache.spark.SparkException: Failed to connect to driver!
at org.apache.spark.deploy.yarn.ApplicationMaster.waitForSparkDriver(ApplicationMaster.scala:577)
at org.apache.spark.deploy.yarn.ApplicationMaster.runExecutorLauncher(ApplicationMaster.scala:433)
at org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:256)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$main$1.apply$mcV$sp(ApplicationMaster.scala:764)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:67)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:66)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692)
at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:66)
at org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:762)
at org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:785)
at org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
修改代码后需要重新编译打包否则会报ERROR YarnScheduler: Lost executor 2 on cdh03: Container container_e01_1568096913481_0453_01_000005 exited from explicit termination异常
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV