yolov7简化网络yaml配置文件

本篇介绍如何简化yolov7的网络配置文件

先上一张简化后的网络结构图:

yolov7简化网络yaml配置文件_第1张图片

了解v7的都知道,配置文件中网络层数多达100多层,不过并不复杂,相似的模块比较多,可以看到简化后配置文件的层数也就31层。

简化前的配置文件:

yolov7简化网络yaml配置文件_第2张图片

首先创建 yolov7-ELAN-E.yaml

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
activation: nn.LeakyReLU(0.1)
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 1]],  # 0

   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Conv, [64, 3, 1]],

   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
   # c2, in_c, k=1, s=1, p=None, g=1, layer=[], backbone=True, act=True
   [-1, 1, ELAN_E, [256, 64,1, 1, None, 1, [-1, -3, -5, -6]]], # 4

   [-1, 1, MP_Concat, [256, 1, 1]], # 5-P3/8
   [-1, 1, ELAN_E, [512, 128,1, 1, None, 1, [-1, -3, -5, -6]]],  # 6

   [-1, 1, MP_Concat, [512, 1, 1]], # 7-P4/16
   [-1, 1, ELAN_E, [1024, 256, 1, 1, None, 1, [-1, -3, -5, -6]]], # 8

   [-1, 1, MP_Concat, [1024, 1, 1]], # 9-P5/32
   [-1, 1, ELAN_E, [1024, 256, 1, 1, None, 1, [-1, -3, -5, -6]]], # 10

  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 11

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [8, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],

   [-1, 1, ELAN_E, [256, 128,1, 1, None, 1, [-1, -2, -3, -4, -5, -6],False]], # 16

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [6, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, ELAN_E, [128, 64,1, 1, None, 1, [-1, -2, -3, -4, -5, -6],False]], # 21

   [-1, 1, MP_Concat, [256, 1, 1]],
   [[-1, 16], 1, Concat, [1]],
   [-1, 1, ELAN_E, [256,128, 1, 1, None, 1, [-1, -2, -3, -4, -5, -6],False]], # 24

   [-1, 1, MP_Concat, [512, 1, 1]],
   [[-1, 11], 1, Concat, [1]],
   [-1, 1, ELAN_E, [512, 256,1, 1, None, 1, [-1, -2, -3, -4, -5, -6],False]], # 27

   [21, 1, RepConv, [256, 3, 1]],
   [24, 1, RepConv, [512, 3, 1]],
   [27, 1, RepConv, [1024, 3, 1]],

   [[28,29,30], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

 在common.py中添加

class ELAN_E(nn.Module):
    # Yolov7 ELAN with args(ch_in, ch_out, kernel, stride, padding, groups, activation)
    def __init__(self, c1, c2, in_c, k=1, s=1, p=None, g=1, layer=[],
                 backbone=True, act=True):
        super().__init__()
        self.layer = layer
        if backbone:
            c_ = in_c
            c_out = c_ * len(self.layer)
            self.cv1 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)
            self.cv2 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)
            self.cv3 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)
        else:
            c_ = in_c
            c_out = c_ * 4 + c2 * 2
            self.cv1 = Conv(c1, c2, k=k, s=s, p=p, g=g, act=act)
            self.cv2 = Conv(c1, c2, k=k, s=s, p=p, g=g, act=act)
            self.cv3 = Conv(c2, c_, k=3, s=s, p=p, g=g, act=act)

        self.cv4 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)
        self.cv5 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)
        self.cv6 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)
        self.cv7 = Conv(c_out, c2, k=k, s=s, p=p, g=g, act=act)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = self.cv2(x)
        x3 = self.cv3(x2)
        x4 = self.cv4(x3)
        x5 = self.cv5(x4)
        x6 = self.cv6(x5)
        inter_x = [x1, x2, x3, x4, x5, x6]
        result = [inter_x[i] for i in self.layer]
        x7 = torch.cat(result, 1)
        return self.cv7(x7)


class MP_Concat(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        super().__init__()
        c2 = c2 // 2
        self.m = nn.MaxPool2d(kernel_size=2, stride=2)
        self.cv1 = Conv(c1, c2, k=k, s=s, p=p, g=g, act=act)
        self.cv2 = Conv(c1, c2, k=k, s=s, p=p, g=g, act=act)
        self.cv3 = Conv(c2, c2, k=3, s=2, p=p, g=g, act=act)

    def forward(self, x):
        x1 = self.m(x)
        x2 = self.cv1(x1)

        x3 = self.cv2(x)
        x4 = self.cv3(x3)

        x5 = torch.cat((x2, x4), 1)
        return x5


class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))


class RepConv(nn.Module):
    # Represented convolution
    # https://arxiv.org/abs/2101.03697

    def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
        super(RepConv, self).__init__()

        self.deploy = deploy
        self.groups = g
        self.in_channels = c1
        self.out_channels = c2

        assert k == 3
        assert autopad(k, p) == 1

        padding_11 = autopad(k, p) - k // 2

        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

        if deploy:
            self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)

        else:
            self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)

            self.rbr_dense = nn.Sequential(
                nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
                nn.BatchNorm2d(num_features=c2),
            )

            self.rbr_1x1 = nn.Sequential(
                nn.Conv2d(c1, c2, 1, s, padding_11, groups=g, bias=False),
                nn.BatchNorm2d(num_features=c2),
            )

    def forward(self, inputs):
        if hasattr(self, "rbr_reparam"):
            return self.act(self.rbr_reparam(inputs))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return (
            kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
            bias3x3 + bias1x1 + biasid,
        )

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch[0].weight
            running_mean = branch[1].running_mean
            running_var = branch[1].running_var
            gamma = branch[1].weight
            beta = branch[1].bias
            eps = branch[1].eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, "id_tensor"):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros(
                    (self.in_channels, input_dim, 3, 3), dtype=np.float32
                )
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def repvgg_convert(self):
        kernel, bias = self.get_equivalent_kernel_bias()
        return (
            kernel.detach().cpu().numpy(),
            bias.detach().cpu().numpy(),
        )

    def fuse_conv_bn(self, conv, bn):

        std = (bn.running_var + bn.eps).sqrt()
        bias = bn.bias - bn.running_mean * bn.weight / std

        t = (bn.weight / std).reshape(-1, 1, 1, 1)
        weights = conv.weight * t

        bn = nn.Identity()
        conv = nn.Conv2d(in_channels=conv.in_channels,
                         out_channels=conv.out_channels,
                         kernel_size=conv.kernel_size,
                         stride=conv.stride,
                         padding=conv.padding,
                         dilation=conv.dilation,
                         groups=conv.groups,
                         bias=True,
                         padding_mode=conv.padding_mode)

        conv.weight = torch.nn.Parameter(weights)
        conv.bias = torch.nn.Parameter(bias)
        return conv

    def fuse_repvgg_block(self):
        if self.deploy:
            return
        print(f"RepConv.fuse_repvgg_block")

        self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])

        self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
        rbr_1x1_bias = self.rbr_1x1.bias
        weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])

        # Fuse self.rbr_identity
        if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity,
                                                                        nn.modules.batchnorm.SyncBatchNorm)):
            # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
            identity_conv_1x1 = nn.Conv2d(
                in_channels=self.in_channels,
                out_channels=self.out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                groups=self.groups,
                bias=False)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
            # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
            identity_conv_1x1.weight.data.fill_(0.0)
            identity_conv_1x1.weight.data.fill_diagonal_(1.0)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
            # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")

            identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
            bias_identity_expanded = identity_conv_1x1.bias
            weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
        else:
            # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
            bias_identity_expanded = torch.nn.Parameter(torch.zeros_like(rbr_1x1_bias))
            weight_identity_expanded = torch.nn.Parameter(torch.zeros_like(weight_1x1_expanded))

            # print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
        # print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
        # print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")

        self.rbr_dense.weight = torch.nn.Parameter(
            self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
        self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)

        self.rbr_reparam = self.rbr_dense
        self.deploy = True

        if self.rbr_identity is not None:
            del self.rbr_identity
            self.rbr_identity = None

        if self.rbr_1x1 is not None:
            del self.rbr_1x1
            self.rbr_1x1 = None

        if self.rbr_dense is not None:
            del self.rbr_dense
            self.rbr_dense = None

 在BaseModel的fuse函数中添加

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
            if isinstance(m, (VanillaStem, VanillaBlock)):
                # print(m)
                m.deploy = True
                m.switch_to_deploy()
            # 添加以下代码
            if isinstance(m, RepConv):
                # print(f" fuse_repvgg_block")
                m.fuse_repvgg_block()
                # m.switch_to_deploy()
        self.info()
        return self

 在parse_model中添加模块名

        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x,
                  ELAN, SPPCSPCSIM,VanillaBlock,VanillaStem,MP_Concat,ELAN_E,RepConv,SPPCSPC}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1

之后修改yolo.py的cfg路径,如果运行成功能看到最上面的图。

贫穷打工牛马项目之余改的,感觉改的还不是很优雅,欢迎小伙伴多提意见。

你可能感兴趣的:(YOLO,YOLO,深度学习,计算机视觉)