pytorch强化学习(1)——DQN&SARSA

实验环境

python=3.10
torch=2.1.1
gym=0.26.2
gym[classic_control]
matplotlib=3.8.0
numpy=1.26.2

DQN代码

首先是module.py代码,在这里定义了网络模型和DQN模型

import torch
import torch.nn as nn
import numpy as np

class Net(nn.Module):
    # 构造只有一个隐含层的网络
    def __init__(self, n_states, n_hidden, n_actions):
        super(Net, self).__init__()
        # [b,n_states]-->[b,n_hidden]
        self.network = nn.Sequential(
            torch.nn.Linear(n_states, n_hidden),
            torch.nn.ReLU(),
            torch.nn.Linear(n_hidden, n_actions)
        )

    # 前传
    def forward(self, x):  # [b,n_states]
        return self.network(x)


class DQN:
    def __init__(self, n_states, n_hidden, n_actions, lr, gamma, epsilon):
        # 属性分配
        self.n_states = n_states  # 状态的特征数
        self.n_hidden = n_hidden  # 隐含层个数
        self.n_actions = n_actions  # 动作数
        self.lr = lr  # 训练时的学习率
        self.gamma = gamma  # 折扣因子,对下一状态的回报的缩放
        self.epsilon = epsilon  # 贪婪策略,有1-epsilon的概率探索
        # 计数器,记录迭代次数
        self.count = 0

        # 实例化训练网络
        self.q_net = Net(self.n_states, self.n_hidden, self.n_actions)

        # 优化器,更新训练网络的参数
        self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=lr)

        self.criterion = torch.nn.MSELoss()  # 损失函数

    def choose_action(self, gym_state):
        state = torch.Tensor(gym_state)
        if np.random.random() < self.epsilon:
            action_values = self.q_net(state)  # q_net(state)采取动作后的预测
            action = action_values.argmax().item()
        else:
            # 随机选择一个动作
            action = np.random.randint(self.n_actions)
        return action

    def update(self, gym_state, action, reward, next_gym_state, done):
        state, next_state = torch.tensor(gym_state), torch.tensor(next_gym_state)
        q_value = self.q_net(state)[action]
        # 前千万不能缺少done,如果下一步游戏结束的花,那下一步的q值应该为0
        q_target = reward + self.gamma * self.q_net(next_state).max() * (1 - float(done))

        self.optimizer.zero_grad()
        dqn_loss = self.criterion(q_value, q_target)
        dqn_loss.backward()
        self.optimizer.step()

然后是train.py代码,在这里调用DQN模型和gym环境,来进行训练:

import gym
import torch
from module import DQN
import matplotlib.pyplot as plt

lr = 1e-3  # 学习率
gamma = 0.95  # 折扣因子
epsilon = 0.8  # 贪心系数
n_hidden = 200  # 隐含层神经元个数

env = gym.make("CartPole-v1")
n_states = env.observation_space.shape[0]  # 4
n_actions = env.action_space.n  # 2 动作的个数

dqn = DQN(n_states, n_hidden, n_actions, lr, gamma, epsilon)

if __name__ == '__main__':
    reward_list = []
    for i in range(500):
        state = env.reset()[0]  # len=4
        total_reward = 0
        done = False
        while True:

            # 获取当前状态下需要采取的动作
            action = dqn.choose_action(state)
            # 更新环境
            next_state, reward, done, _, _ = env.step(action)
            dqn.update(state, action, reward, next_state, done)
            state = next_state

            total_reward += reward

            if done:
                break
        print("第%d回合,total_reward=%f" % (i, total_reward))
        reward_list.append(total_reward)

    # 绘图
    episodes_list = list(range(len(reward_list)))
    plt.plot(episodes_list, reward_list)
    plt.xlabel('Episodes')
    plt.ylabel('Returns')
    plt.title('DQN Returns')
    plt.show()

SARSA代码

首先是module.py代码,在这里定义了网络模型和SARSA模型。
SARSA和DQN基本相同,只有在更新Q网络的时候略有不同,已在代码相应位置做出注释。

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F

class Net(nn.Module):
    # 构造只有一个隐含层的网络
    def __init__(self, n_states, n_hidden, n_actions):
        super(Net, self).__init__()
        # [b,n_states]-->[b,n_hidden]
        self.network = nn.Sequential(
            torch.nn.Linear(n_states, n_hidden),
            torch.nn.ReLU(),
            torch.nn.Linear(n_hidden, n_actions)
        )

    # 前传
    def forward(self, x):  # [b,n_states]
        return self.network(x)


class SARSA:
    def __init__(self, n_states, n_hidden, n_actions, lr, gamma, epsilon):
        # 属性分配
        self.n_states = n_states  # 状态的特征数
        self.n_hidden = n_hidden  # 隐含层个数
        self.n_actions = n_actions  # 动作数
        self.lr = lr  # 训练时的学习率
        self.gamma = gamma  # 折扣因子,对下一状态的回报的缩放
        self.epsilon = epsilon  # 贪婪策略,有1-epsilon的概率探索
        # 计数器,记录迭代次数
        self.count = 0

        # 实例化训练网络
        self.q_net = Net(self.n_states, self.n_hidden, self.n_actions)

        # 优化器,更新训练网络的参数
        self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=lr)

        self.criterion = torch.nn.MSELoss()  # 损失函数

    def choose_action(self, gym_state):
        state = torch.Tensor(gym_state)
        # 基于贪婪系数,有一定概率采取随机策略
        if np.random.random() < self.epsilon:
            action_values = self.q_net(state)  # q_net(state)是在当前状态采取各个动作后的预测
            action = action_values.argmax().item()
        else:
            # 随机选择一个动作
            action = np.random.randint(self.n_actions)
        return action

    def update(self, gym_state, action, reward, next_gym_state, done):
        state, next_state = torch.tensor(gym_state), torch.tensor(next_gym_state)
        q_value = self.q_net(state)[action]

        '''
        sarsa在更新网络时选择的是q_net(next_state)[next_action] 
        这是sarsa算法和dqn的唯一不同
        dqn是选择max(q_net(next))
        '''
        next_action = self.choose_action(next_state)
        # 千万不能缺少done,如果下一步游戏结束的话,那下一步的q值应该为0,而不是q网络输出的值
        q_target = reward + self.gamma * self.q_net(next_state)[next_action] * (1 - float(done))

        self.optimizer.zero_grad()
        dqn_loss = self.criterion(q_value, q_target)
        dqn_loss.backward()
        self.optimizer.step()

SARSA也有tarin.py文件,功能和上面DQN的一样,内容也几乎完全一样,只是把DQN的名字改成SARSA而已,所以在这里不再赘述。

运行结果

DQN的运行结果如下:
pytorch强化学习(1)——DQN&SARSA_第1张图片

SARSA运行结果如下:
pytorch强化学习(1)——DQN&SARSA_第2张图片

你可能感兴趣的:(pytorch,python,人工智能)