Logistic Regression——逻辑回归

1. 为什么需要逻辑回归     

        在前面学习的线性回归中,我们的预测值都是任意的连续值,例如预测房价。除此之外,还有一个常见的问题就是分类问题,而逻辑回归是一个解决分类问题的模型,其预测值是离散的

        分类问题又包括二分类问题与多分类问题,对于二分类问题来说,预测值只可能是\否即1\0,

        对于多分类问题来说,预测值可能是多个分类中的一个,例如我输入的是一些动物的图片,我想让模型辨认这些是什么动物,我可以设定预测值1代表模型认为输入是一只猫,预测值2代表模型认为输入是一只狗,预测值3代表模型认为输入是一只猪。

2. 二分类逻辑回归

2.1 从线性回归到分类

        如果有这样一个场景,输入x为肿瘤的大小,而需要预测是否是恶性的。接下来我们仍然使用线性回归模型,但如果我们这增设这样一个阈值

                Logistic Regression——逻辑回归_第1张图片

        这样一来,所有预测值都将变成1或者0,实现了分类的目的

Logistic Regression——逻辑回归_第2张图片

2.2 逻辑回归模型

        对于线性回归的模型来说,其输出值是任意的,常常会远远大于1或者远远小于0,仅仅上述的阈值可能并不会起到作用或者效果很差。

        对此,逻辑回归会先将所有预测值通过sigmoid 函数映射到[0,1]区间,函数表达式和图像如下图

                                                        (z为输入)

        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第3张图片

        sigmoid 函数是一个非线性函数,当x大于0时,输出值大于0.5,当x<0时输出值小于0.5

        最终我们得到逻辑回归的模型如下

        ​​​​​​​        Logistic Regression——逻辑回归_第4张图片

           h_{\theta }(x)作用是,对于给定的输入变量,通过参数\theta计算输出变量为1的可能性是多少

        

        假如对于一个输入x,最终计算出h_{\theta }(x)=0.7,则模型认为有70%的可能其为正向类(=1),相反负向类的可能性就为1-0.7=0.3

        最后在分类时,再入加上之前的阈值

Logistic Regression——逻辑回归_第5张图片

        所以逻辑回归就是线性回归再嵌套一个非线性的sigmoid函数,其本质还是回归

2.4 决策边界(Decision Boundary

        假如分类这样一些数据,‘x’为1,圈为0

        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第6张图片

        通过建立逻辑回归模型

        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第7张图片

        假设经过训练我们得到了这样一组参数,于是得到嵌套在逻辑回归里的线性回归模型\theta^{\top }X=-3+x_{1}+x_{2},根据逻辑回归的原理当-3+x_{1}+x_{2}>=0时预测1,当-3+x_{1}+x_{2}<0时预测0,于是分隔情况就是-3+x_{1}+x_{2}=0,我们可以画出这个直线

        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第8张图片

        这条线便是模型的决策边界

        如果是这样的数据

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第9张图片

        建立逻辑回归模型

        得到参数

        

        同样的原理,得到其决策边界,是一个圆心在原点,半径为1的圆

        

        ​​​​​​​        ​​​​​​​        ​​​​​​​                Logistic Regression——逻辑回归_第10张图片

2.5 损失函数

2.5.1 为什么不用MSE损失函数

       根据上述的理论可以知道,逻辑回归的和线性回归的本质是一样的。那是不是意味着损失函数也可以用MSE。

        在线性回归中损失函数如下

                                                J(\theta )=\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta }^{i}-y^{i})^{2}

        我们将​​​​​​​Logistic Regression——逻辑回归_第11张图片带入可以得到

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​J(\theta )=\frac{1}{2m}\sum_{i=1}^{m}(\frac{1}{1+e^{\theta ^{\top }x}}-y)^{2}

        得到的是一个非凸函数(non-convexfunction),这会很大程度上影响梯度下降法寻找全局最小值,很可能停留在在某个局部极小值

Logistic Regression——逻辑回归_第12张图片

2.5.2 对数损失函数

        介于上述问题,对于二分类逻辑回归来说,使用的是对数损失函数。

对于一个样本来说,预测值会有1和0两种情况,对应两个损失值

     Logistic Regression——逻辑回归_第13张图片

(log一般以e为底)

Logistic Regression——逻辑回归_第14张图片        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第15张图片

        当实际y=1时,如果预测值h_{\theta }(x)=1,此时预测是完全正确的,代入上式计算误差为0,如果预测值h_{\theta }(x)不为1,代表模型没有100%的把握认为这是正向类的,此时误差会随着h_{\theta }(x)的减小而变大。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第16张图片

        当实际y=0时,如果预测值h_{\theta }(x)=0,此时预测是完全正确的,代入上式计算误差为0,如果预测值h_{\theta }(x)不为0,代表模型没有100%的把握认为这是负向类的,此时误差会随着h_{\theta }(x)的增大而变大。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        Logistic Regression——逻辑回归_第17张图片

        将这两种情况合在一起

        再求和取平均得到最终损失函数表达式

Logistic Regression——逻辑回归_第18张图片

        采用矩阵的形式表达

2.6 梯度下降

Logistic Regression——逻辑回归_第19张图片 Logistic Regression——逻辑回归_第20张图片

        矩阵表达式为

Logistic Regression——逻辑回归_第21张图片

        使用梯度下降

Logistic Regression——逻辑回归_第22张图片

        矩阵表达式为

        \theta = \theta -\frac{\alpha }{m}X^{\top }(h-y)

3. 多分类逻辑回归

        多分类逻辑回归的实现依赖于二分类

Logistic Regression——逻辑回归_第23张图片

        将其中一个类标记为正向类,然后将其他类都标记为负向类,得到一个模型h_{\theta }^{1}(x),接着选择另外一个类标记为正向类,然后将其他类都标记为负向类,又得到一个模型h_{\theta }^{2}(x),以此类推,我们可以得到一系列模型,假设有k个类

        h_{\theta }^{i}(x)=p(y=i|x;\theta ),i=(1,2,3,4……k)

        训练好这一系列模型后,对于一个输入x,让其在所有的分类器都得到一个输出,最后选择一个maxh_{\theta }(x)作为最终的输出

4. 逻辑回归的实例

        ex2data1数据集包含100行数据前两列是学生的两种考试的成绩,最后一列是他们被是否录取。需要根据学生的两种考试的成绩来预测他们被是否录取。

1.读取数据集

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('ex2data1.txt',names=['exam1','exam2','admitted'])
data.head()

Logistic Regression——逻辑回归_第24张图片

# 根据admitted的值分类
plt.scatter(positive['exam1'],positive['exam2'],marker='o',label='Admitted')
plt.scatter(negative['exam1'],negative['exam2'],marker='x',label='Not Admitted')
plt.xlabel('Exam1 Score')
plt.ylabel('Exam2 Score')
plt.legend()
plt.show()

Logistic Regression——逻辑回归_第25张图片

2.数据预处理

data.insert(0,'ones',1)
X = data.iloc[:,0:-1].values
y = data.iloc[:,-1].values
y = y.reshape(100,1)

3.定义Sigmoid函数

def sigmoid(z):
    return 1/(1+np.exp(-z))

4.定义损失函数

def lossFunction(X,y,theta):
    m = len(X)
    h = sigmoid(X@theta)
    return (1/m)*np.sum([email protected](h)-(1-y)[email protected](1-h))

5.模型训练

def train(X,y,alpha,epochs):
    loss_history = []
    theta = np.random.rand(3,1)
    for i in range(epochs):
        m = len(X)
        h = sigmoid(X@theta)
        theta = theta - (alpha/m)*X.T@(h-y)
        current_loss = lossFunction(X,y,theta)
        loss_history.append(current_loss) 
        if (i+1) % 100 == 0:
            print("epochs={},current_loss={}".format(i+1,current_loss))
     # 绘制损失函数图像
    plt.plot(range(1,epochs+1),loss_history)
    plt.xlabel('epochs')
    plt.ylabel('loss')
    plt.title('Loss Curve')
    plt.show()
    return theta

# 参数
alpha = 0.1
epochs = 1000
theta = train(X,y,alpha,epochs)

Logistic Regression——逻辑回归_第26张图片

admitted = X[y.flatten() == 1]
not_admitted = X[y.flatten() == 0]
plt.scatter(admitted[:, 1], admitted[:, 2], label='Admitted', marker='o')
plt.scatter(not_admitted[:, 1], not_admitted[:, 2], label='Not Admitted', marker='x')
plt.xlabel('Exam 1 score')
plt.ylabel('Exam 2 score')

# 绘制决策边界
plot_x = np.array([min(X[:, 1]) - 2, max(X[:, 1]) + 2])
plot_y = (-1 / theta[2]) * (theta[1] * plot_x + theta[0])
plt.plot(plot_x, plot_y, label='Decision Boundary')
plt.legend()
plt.show()

 Logistic Regression——逻辑回归_第27张图片

你可能感兴趣的:(机器学习与深度学习,逻辑回归,算法,机器学习)