在深度学习中,丢弃法(Dropout)是一种常用的正则化技术,旨在减少模型的过拟合现象,可能会比之前的权重衰减(Weight Decay)效果更好。通过在训练过程中随机丢弃一部分神经元,可以有效地减少神经网络中的参数依赖性,增强模型的泛化能力。
一个好的模型需要对输入数据的扰动鲁棒,也就是说,不管图片加入多少噪音,我也是能看清楚的。使用有噪音的数据等价于Tikhonov正则,正则使得权重值范围不会太大,避免一定的过拟合。与之前加入的噪音不一样,之前是固定噪音,丢弃法是随机噪音,丢弃法不是在输入加噪音,而是在层之间加入噪音,所以丢弃法也算是一个正则。
假如是上一层到下一层的某一个输出(上一层输出向量的某一个元素)的话,对加入噪音得到,我们希望加入噪音后不改变期望,即:
丢弃法对上一层输出向量的每一个元素做如下扰动:
此时这个元素的期望是不变的:
通常将丢弃法作用在隐藏全连接层的输出上。如图"MLP with one hidden layer"带有1个隐藏层和5个隐藏单元的多层感知机。当我们将暂退法应用到隐藏层,以的概率将隐藏单元置为零时,结果可以看作一个只包含原始神经元子集的网络。比如在图"Hidden layer after dropout"中,删除了和,因此输出的计算不再依赖于或,并且它们各自的梯度在执行反向传播时也会消失。这样,输出层的计算不能过度依赖于的任何一个元素。
要实现单层的暂退法函数,我们从均匀分布中抽取样本,样本数与这层神经网络的维度一致。然后我们保留那些对应样本大于的节点,把剩下的丢弃。
在下面的代码中,我们实现 `dropout_layer` 函数,该函数以`dropout`的概率丢弃张量输入`X`中的元素,如上所述重新缩放剩余部分:将剩余部分除以`1.0-dropout`。
import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# 在本情况中,所有元素都被丢弃
if dropout == 1:
return torch.zeros_like(X)
# 在本情况中,所有元素都被保留
if dropout == 0:
return X
# torch.rand(X.shape)生成了一个与输入张量X相同形状的随机数张量,其中的元素值在[0, 1)的区间内均匀分布。
# (torch.rand(X.shape) > dropout)执行了一个逻辑判断,将随机数张量中大于dropout的元素置为True,小于等于dropout的元素置为False。
# .float()将布尔型张量转换为浮点型张量,将True转换为1.0,将False转换为0.0。
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
我们可以通过下面几个例子来测试`dropout_layer`函数。我们将输入`X`通过暂退法操作,暂退概率分别为0、0.5和1。
X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 2., 0., 6., 0., 0., 0., 14.],
[16., 18., 0., 22., 0., 26., 28., 30.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
同样,我们使用Softmax回归中引入的Fashion-MNIST数据集(不懂的可以看链接里面的文章)。我们定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
我们可以将暂退法应用于每个隐藏层的输出(在激活函数之后),并且可以为每一层分别设置暂退概率:常见的技巧是在靠近输入层的地方设置较低的暂退概率。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5,并且暂退法只在训练期间有效。
dropout1, dropout2 = 0.2, 0.5 # 在靠近输入层的地方设置较低的暂退概率,因此dropout1设为0.2
class Net(nn.Module):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2, num_outputs)
self.relu = nn.ReLU()
def forward(self, X):
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
# 只有在训练模型时才使用dropout
if self.training == True:
# 在第一个全连接层之后添加一个dropout层
H1 = dropout_layer(H1, dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
# 在第二个全连接层之后添加一个dropout层
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
这类似于前面描述的多层感知机训练和测试。
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
对于深度学习框架的高级API,我们只需在每个全连接层之后添加一个`Dropout`层,将暂退概率作为唯一的参数传递给它的构造函数。在训练时,`Dropout`层将根据指定的暂退概率随机丢弃上一层的输出(相当于下一层的输入)。在测试时,`Dropout`层仅传递数据。
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
# 在第一个全连接层之后添加一个dropout层
nn.Dropout(dropout1),
nn.Linear(256, 256),
nn.ReLU(),
# 在第二个全连接层之后添加一个dropout层
nn.Dropout(dropout2),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
接下来,我们对模型进行训练和测试。
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)