- LabVIEW闭环控制系统硬件选型与实时性能
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW功能
在LabVIEW闭环控制系统的开发中,硬件选型直接影响系统的实时性、精度与稳定性。需综合考虑数据采集速度(采样率、接口带宽)、计算延迟(算法复杂度、处理器性能)、输出响应时间(执行器延迟、控制周期)及操作系统定时精度等核心要素。本文结合典型工业场景(如温度控制、运动控制),分析多类型硬件(USB/PCI/PXI/以太网/串口)的适配性,并提供量化选型依据。一、数据采集模块选型分析1.接口类型与传输
- 跳表的C语言实现
sekaii
算法
跳表(SkipList)是一种基于链表的动态数据结构,用于实现高效的查找、插入和删除操作。它通过引入多级索引来加速查找过程,类似于多级索引的有序链表。跳表的平均时间复杂度为O(logn),在某些场景下可以替代平衡树。以下是跳表的基本实现思路和一个简单的C语言实现示例。1.跳表的基本概念节点结构:每个节点包含一个值和多个指向不同层级的指针。层级:每个节点的层级是随机的,通常通过抛硬币的方式决定。层级
- Python精进系列:ord 函数
进一步有进一步的欢喜
python开发语言
目录一、引言二、基本概念2.1Unicode编码简介2.2ord函数定义三、使用示例3.1处理ASCII字符3.2处理非ASCII字符四、与chr函数的关系五、实际应用场景5.1字符排序5.2简单加密算法5.3字符验证六、注意事项6.1输入参数要求6.2跨平台兼容性七、总结一、引言在Python编程里,字符和编码的处理是常见的操作。ord函数作为Python内置函数之一,在字符和Unicode编码
- 携程开源的分布式apollo技术,整合springboot集成实现动态刷新配置
2401_84584854
程序员java面试学习
最后这份文档从构建一个键值数据库的关键架构入手,不仅带你建立起全局观,还帮你迅速抓住核心主线。除此之外,还会具体讲解数据结构、线程模型、网络框架、持久化、主从同步和切片集群等,帮你搞懂底层原理。相信这对于所有层次的Redis使用者都是一份非常完美的教程了。整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~你的支持,我的动力;祝各位前程似锦,offer不断!!!本文已被CODING开源项目:【
- Python高级开发工程师
巴啦啦小魔仙变身
python开发语言
Python高级开发工程师通常会围绕技术能力、项目经验、问题解决能力等方面展开,以下为你详细介绍面试的常见内容、准备方式及注意事项:常见面试内容技术基础语言特性:深入理解Python的高级特性,如装饰器、元类、描述符等的原理和应用场景。例如,面试官可能会要求你现场编写一个装饰器来实现函数执行时间的统计。数据结构与算法:熟悉常见的数据结构(如列表、字典、集合、堆、栈、队列、链表、树、图等)和算法(如
- 浅谈模拟退火
Alaso_shuang
算法分类学习笔记算法
模拟退火简介模拟退火是一种随机化算法。对于一个当前最优解附近的非最优解,爬山算法直接舍去了这个解。而很多情况下,我们需要去接受这个非最优解从而跳出这个局部最优解,即为模拟退火算法。当一个问题的方案数量极大(甚至是无穷的)而且不是一个单峰函数时,常使用模拟退火求解。实现如果新状态的解更优则修改答案,否则以一定概率接受新状态。模拟退火时有三个参数:初始温度T_0,降温系数d,终止温度T_k。是一个比较
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 智能优化算法:海洋捕食者算法
智能算法研学社(Jack旭)
智能优化算法算法机器学习神经网络
智能优化算法:海洋捕食者算法文章目录智能优化算法:海洋捕食者算法1.算法原理2.实验结果3.参考文献4.Matlab代码摘要:海洋捕食者算法(MarinePredatorsAlgorithm,MPA)是AfshinFaramarzi等人于2020年提出的一种新型元启发式优化算法,其灵感来源于海洋适者生存理论,即海洋捕食者通过在Lévy游走或布朗游走之间选择最佳觅食策略。具有寻优能力强等特点。1.算
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- Day7 25/2/20 THU
给bug两拳
每日技术博客算法
【一周刷爆LeetCode,算法大神左神(左程云)耗时100天打造算法与数据结构基础到高级全家桶教程,直击BTAJ等一线大厂必问算法面试题真题详解(马士兵)】https://www.bilibili.com/video/BV13g41157hK?p=4&vd_source=04ee94ad3f2168d7d5252c857a2bf358目录4、链表4.3链表的习题4.3.1例14.3.2例2及其进
- 从零手撸工业级Qt文件传输系统:TCP粘包/断点续传/SSL加密全解
十年编程老舅
QT开发qt项目qt项目实战c++项目qt计算机毕设项目qt文件传输qt教程
很多初学者都会遇到这个坎,如何将Windows数据结构、网络编程等知识整合为完整的项目。本文将深入解析一个基于C++Qt开发的企业级文件传输系统,涵盖TCP通信、断点续传、SSL加密、SQLite持久化等核心技术。(项目源码来文章底部拿)一、系统核心功能1.基础通信能力双工消息传输(支持中文字符)文件传输进度条同步(4KB分块策略)传输完整性验证(安装包可执行性测试)2.高级特性断点续传(记录已传
- 反转链表的2种解法
用户0912
算法与数据结构链表反转迭代递归数据结构
数据结构structListNode{intval;structListNode*next;ListNode(intx):val(x),next(NULL){}};迭代反转2个节点,每次记录并更新现在指向节点的位置沿着链表直到现在节点指向空节点classSolution{public:ListNode*ReverseList(ListNode*pHead){ListNode*preNode=nul
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- DP 问题 -- LQR中的DP问题
BineHello
自动驾驶算法人工智能强化学习
深入地介绍线性二次调节问题(LinearQuadraticRegulator,LQR),并详细说明它作为动态规划(DP)的一个经典应用问题的求解过程。一、LQR问题定义(最优控制视角)LQR问题是一种特殊的最优控制问题,系统动力学为线性、代价函数为二次型的优化问题:离散时间线性系统:xt+1=Axt+Butx_{t+1}=Ax_t+Bu_txt+1=Axt+Butxt∈Rnx_t\in\mathb
- 算法笔记入门——问题 I: 锤子剪刀布 (20)
sauTCc
算法笔记算法
题目描述大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。输入输入第1行给出正整数N(intmain(){intn;scanf("%d",&n);getchar();chara,b;intpin=0,vin_jia=0,vin_yi=0;intjia[3]={0},yi[3]={0};fo
- 8.3 GPTQ量化技术:4倍压缩大模型显存,精度零损失!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
GPTQ量化技术:4倍压缩大模型显存,精度零损失!8.2GPTQ:专为GPT设计的模型量化算法一、模型量化技术背景在讨论GPTQ之前,我们需要先理解大模型部署面临的显存困境。以LLaMA-7B模型为例:FP32精度显存占用:28GBFP16精度显存占用:14GBINT8量化后显存占用:7GBINT4量化后显存占用:3.5GB
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 主流加解密算法全景解析:对称、非对称与哈希算法详解
JT-999
网络哈希算法网络算法
主流加解密算法通常分为以下三大类,每类都有其独特的特点和应用场景,下面我们详细介绍这三类算法的原理、优势、缺陷以及典型应用场景:1.对称加密算法原理对称加密算法是指加密和解密都使用同一个密钥。发送方和接收方事先共享一个秘密密钥,利用这个密钥将明文转换为密文,加密后的数据只有用相同的密钥才能解密恢复原文。其基本过程通常包括:明文分块(如果是分组加密算法);对每个数据块进行一系列变换(如置换、替换、异
- 代码随想录算法营Day57 | 孤岛的总面积,沉没孤岛,水流问题,建造最大岛屿
寂枫zero
算法pythonleetcode
孤岛的总面积这道题先将靠近边界线上的岛屿都放置为0,然后再用深度或者广度搜索算法去计算剩余的孤岛总面积count=0position=[[1,0],[0,1],[-1,0],[0,-1]]defdfs(matrix,x,y):globalcountmatrix[x][y]=0count+=1fori,jinposition:next_x=x+inext_y=y+jifnext_x=len(matr
- Unity引擎开发:2D与3D渲染技术_虚拟现实与增强现实技术
chenlz2007
游戏开发2unity3dvrlucene游戏引擎材质ar
虚拟现实与增强现实技术在上一节中,我们探讨了Unity引擎中的光照和阴影处理技术,了解了如何通过不同的光照模型和阴影算法提升游戏的视觉效果。接下来,我们将进入虚拟现实(VR)和增强现实(AR)技术的世界,探讨如何在Unity引擎中实现这些技术,特别是在动作游戏中的应用。虚拟现实(VR)技术虚拟现实技术通过计算机生成的环境来模拟真实的或想象的场景,让用户能够沉浸其中。Unity引擎提供了强大的工具和
- 程序员必备神器:DeepSeek如何帮你高效开发?
后端
作为一名程序员,你是否曾经为了找到一个合适的代码片段而翻遍GitHub?或者为了调试一个复杂的算法而熬夜到凌晨?如果你也有类似的经历,那么今天我要介绍的这款工具——DeepSeek,可能会成为你的开发利器。它不仅能帮你快速找到解决方案,还能提升你的开发效率,甚至让你在代码的世界里游刃有余。DeepSeek是什么?简单来说,它就像是一个智能助手,专门为程序员设计。无论是前端开发、后端架构,还是数据分
- 30天学会Go--第7天 GO语言 Redis 学习与实践
野生的程序媛
Go后端成神之路golangredis学习开发语言后端网络
30天学会Go–第7天GO语言Redis学习与实践文章目录30天学会Go--第7天GO语言Redis学习与实践前言一、Redis基础知识1.1Redis的核心特性1.2Redis常见使用场景二、安装Redis2.1在Linux上安装2.2在Windows上安装2.3使用Docker安装Redis三、Redis常用命令3.1基本操作3.2数据结构操作字符串(String)哈希(Hash)列表(Lis
- 30天学会Go--第7天 GO语言 Redis 学习与实践(改)
野生的程序媛
Go后端成神之路golangredis学习后端开发语言网络
30天学会Go–第7天GO语言Redis学习与实践(改)文章目录30天学会Go--第7天GO语言Redis学习与实践(改)前言一、Redis基础知识1.1Redis的核心特性1.2Redis常见使用场景二、安装Redis2.1在Linux上安装2.2在Windows上安装2.3使用Docker安装Redis三、Redis常用命令3.1基本操作3.2数据结构操作字符串(String)扩展命令:哈希(
- 基于PyTorch的深度学习5—神经网络工具箱
Wis4e
深度学习pytorch神经网络
nn.Module是nn的一个核心数据结构,它可以是神经网络的某个层(Layer),也可以是包含多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,生成自己的网络/层。nn中已实现了绝大多数层,包括全连接层、损失层、激活层、卷积层、循环层等,这些层都是nn.Module的子类,能够自动检测到自己的Parameter,并将其作为学习参数,且针对GPU运行进行了cuDNN优化。nn中的
- 28.代码随想录算法训练营第二十八天|122. 买卖股票的最佳时机 II,55. 跳跃游戏,45. 跳跃游戏 II,1005. K 次取反后最大化的数组和
白鹭鸣鸣!
算法java
28.代码随想录算法训练营第二十八天|122.买卖股票的最佳时机II,55.跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和122.买卖股票的最佳时机II-力扣(LeetCode)给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- 智驾技术全链条解析
TrustZone_
智驾智驾
智驾技术全链条解析(2025年最新版)智驾技术涵盖从环境感知到车辆控制的完整闭环,涉及硬件、算法、数据与系统集成等多个领域。以下结合行业最新进展(截至2025年3月)进行深度拆解:一、感知技术:汽车的“感官系统”多传感器融合架构•核心传感器类型:◦激光雷达:华为ADS3.0采用200米探测距离的激光雷达,实现高精度三维建模,但成本较高(约2500元/颗);◦毫米波雷达:用于穿透雨雾探测,比亚迪天神
- 代码随想录算法营Day62 | 寻宝(Prim算法,kruskal算法)
寂枫zero
算法python
寻宝(Prim算法,kruskal算法)在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。最小生成树P
- 考研复习之记忆方法
herosunly
考名校研究生经验分享考研
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 数据挖掘|关联分析与Apriori算法详解
皖山文武
数据挖掘商务智能数据挖掘关联分析Apriori算法机器学习
数据挖掘|关联分析与Apriori算法1.关联分析2.关联规则相关概念2.1项目2.2事务2.3项目集2.4频繁项目集2.5支持度2.6置信度2.7提升度2.8强关联规则2.9关联规则的分类3.Apriori算法3.1Apriori算法的Python实现3.2基于mlxtend库的Apriori算法的Python实现1.关联分析关联规则分析(Association-rulesAnalysis)是数
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep