- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- JVM基础篇1 - Class的加载
The小可
JVMjavaide
JVM基础篇1-Class的加载JVM基础篇2-指令集JVM进阶篇1-内存模型JVM进阶篇2-GC垃圾回收JVM总览-JVM架构引入jvm面试题:谈谈对jvm的理解?java8虚拟机和之前的变化更新?什么是OOM,什么是栈溢出StackOverFlowError?怎么分析JVM常用的调优参数有哪些?内存快照如何抓取?怎么分析Dump文件?知道吗?谈谈jVM,类加载器的认识?1.什么是JVM?jvm
- 使用C#对象将WinRiver项目文件进行复杂的XML序列化和反序列化实例详解
中游鱼
C#序列化和反序列化MMTc#xml序列化和反序列化属性的序列化和反序列化完整序列化ADCP和WinRiver
使用C#对象将WinRiver项目文件进行XML序列化和反序列化的实例详解一、序列化和反序列化的目的二、WinRiver的项目MMT文件架构示例三、以WinRiver为对象进行C#代码编程3.1声明WinRiver对象3.2声明Project对象3.3声明Site_Information对象3.4声明Site_Discharge对象3.5声明QA_QC、Collect_Data、DisplaySe
- 复习博客:JVM
hdzw20
java八股文复习jvmjavaintellij-ideaspring后端
复习博客:JVM今日复习内容今天学习Java虚拟机(JVM),它是Java程序运行的基石。理解JVM的工作原理对于优化Java应用性能和排查问题至关重要。主要复习了以下内容:JVM内存模型JVM内存模型(也称为运行时数据区域)主要分为以下几个部分:程序计数器(ProgramCounterRegister):一块较小的内存空间,是当前线程所执行的字节码的行号指示器。每个线程都有一个独立的程序计数器,
- Apache Ignite 的并发控制:实现高性能事务处理的关键
AI天才研究院
AI实战AI人工智能与大数据LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着大数据时代的到来,数据量的增长和计算能力的提升使得传统的数据库和计算模型已经无法满足业务需求。为了应对这些挑战,分布式计算和存储技术得到了广泛的研究和应用。ApacheIgnite是一款高性能的分布式数据库和计算平台,它可以提供实时性能和高可用性,同时支持事务处理和并发控制。在这篇文章中,我们将深入探讨ApacheIgnite的并发控制机制,以及如何实现高性能事务处理。我们将从以下
- 前端权限控制:深入理解与实现RBAC模型
什么是RBAC?RBAC(Role-BasedAccessControl,基于角色的访问控制)是一种广泛应用于系统权限管理的模型。它将权限与角色关联,用户通过被分配适当的角色来获得相应的权限,而不是直接将权限分配给用户。在前端领域,RBAC模型帮助我们实现:界面的动态渲染(不同角色看到不同UI)路由访问控制操作权限校验数据展示过滤前端RBAC的核心概念1.用户(User)系统的使用者,可以拥有一个
- 大模型(LLM)推理框架汇总
AIGC大模型 吱屋猪
langchain人工智能AI-native百度产品经理神经网络自然语言处理
MLCLLMsubmodulesinMLCLLM大模型(LLM)好性能通用部署方案,陈天奇(tvm发起者)团队开发.项目链接docs:https://llm.mlc.ai/docs/github:https://github.com/mlc-ai/mlc-llm支持的平台和硬件platforms&hardware支持的模型|Architecture|PrebuiltModelVariants||—
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- HCIP第一、二章笔记整理
aaaBsBsBsB
笔记网络tcp/ip
第一章:TCP协议的扩展一、面向连接点到点:TCP通讯中仅存在通讯双方,无第三方。连接性质:非物理链路上的连接,而是逻辑上的连接。二、TCP的报文结构核心字段:包括源端口号(16位)、目标端口号(16位)、序列号(32位)、确认应答号(32位)、首部长度(4位)、保留位(6位)、标记位(如SYN、ACK、RST等)、窗口大小(16位)、校验和(16位)、紧急指针(16位)、选项(可变长度)及数据。
- HCIP第一天课程笔记整理
搞IT的马哥
IP网络网络协议tcp/ip服务器
HCIP----huawei认证高级工程师抽象语言先转化成编码编码一定要转化成二进制(为什么一定要转化成二进制?)二进制信号转化成电信号处理电信号(协议等同于标准,目的就是提升服务)(1876年电话诞生,1946年第一台电子计算机诞生)OSI参考模型---OSI/RM---ISO(国际标准化组织)---1979年颁布开放式系统互联参考模型(应表会传网数物)应用层---提供各种应用服务,将抽象语言转
- 《领导梯队》丨你真的会当领导吗?
笔墨之林
企业想要获得成功,就必须在各个领导阶层拥有出色的领导者。然而,企业内部培养领导人才的传统模式,常常缺乏系统性和完整性。《领导梯队》一书有效地解决了上述问题,指导企业成功应对今天的商业环境带来的挑战。“领导梯队模型”源自通用电气等世界卓越企业的实践,对于企业制定领导人才继任计划和培养各级领导人才具有重要的指导作用。01从管理自我到管理他人第一次担任经理,想要获得成功需要一个重大的转变,即他们的工作成
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- Python数据读写与组织全解析(查缺补漏篇)
Monkey的自我迭代
python学习的查缺补漏机器学习人工智能python
1高维数据由键值对类型的数据构成,可以多层嵌套。高维数据相比一维和二维数据能表达更加灵活和复杂的数据关系,可以用字典类型表示。一维数据不用字典类型来表示。2read、readline、redlines和for循环输出读取的区别直接read,读取的结果就是一个字符串,和文件中一模一样f_2=open('cpi.csv','r')print(f_2.read())指标,2015,2016,2017,居
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- Java学习----NIO模型
典孝赢麻崩乐急
java学习nio
在Java的I/O模型中,NIO(Non-BlockingI/O,非阻塞I/O)是对BIO的重要改进。它为高并发场景提供了更高效的处理方式,在众多Java应用中发挥着关键作用。NIO模型的核心在于非阻塞和多路复用,其采用“一个线程处理多个连接”的模式,主要依靠通道(Channel)、缓冲区(Buffer)和选择器(Selector)这三个核心组件协同工作,每个核心组件的功能原理和功能如下:(1)通
- C语言程序设计--第一章 C语言概述
✎ ぅTrip、°
c语言
计算机语言计算机语言种类有很多,根据其发展的过程和面向的对象,可分为三类:机器语言、汇编语言、高级语言。机器语言(第一代语言)由二进制代码0和1构成的指令序列,面向计算机CPU系统,是计算机可以直接识别并执行的计算机语言。例:加法指令10000000、减法指令10010000优点:机器语言能被计算机CPU直接理解和执行,不需要另外的翻译软件,占用空间少,执行速度快。缺点:机器语言缺点主要表现在难理
- python排序算法之基数排序
华强笔记
python数据结构和算法python算法
#代码如下:'''基数排序:1.把数据分为10个桶,以为数字有0-9这10个2.依次把数据的个位,十位,百位等等各个位数的数据进行分桶排序,放在这10个桶中3.最大的数有k位,则循环k次4.时间复杂度O(kn),空间复杂度O(k+n),其中k=log10(n)+1'''defradixs_sort(li):max_num=max(li)it=0while10**it<=max_num:bucket
- 熬夜之后吃什么养生食物来补身体?2022-12-29
ffd7b3b7d90f
熬夜之后吃什么养生食物来补身体?因为工作,学习等方面的原因,现如今的年轻人越来越多地开始经常熬夜。都提倡早睡早起,很明显地说明熬夜晚睡对身体有害。有时候年轻人因为年轻身体好,不觉得熬几天夜有什么。但其实熬夜的危害特别大,如果你熬了夜,第二天一定要补回来的。一、需要的营养素1、补水。水是生命之源,熬夜的你,生物钟被打乱,代谢加快,体内的水循环出现异常。所以必须要补充足够的水分来滋养你的身体。2、维生
- 【C语言编写随机数生成器】-经典C语言程序100例之十二
DevRevolt
c语言算法开发语言编程
【C语言编写随机数生成器】-经典C语言程序100例之十二随机数在计算机编程中是非常重要的一种技术,因为它可以用于创建随机序列、密码学、统计分析等多个领域。本文介绍了使用C语言编写随机数生成器的方法。C语言提供了rand()和srand()函数来生成伪随机数。其中,srand()函数用于初始化随机数发生器,而rand()函数则返回0到RAND_MAX(通常为32767)之间的随机整数。这两个函数的使
- 边缘计算监控突围:Prometheus在5G MEC环境中的瘦身方案
作者:开源大模型智能运维FreeAiOps引言:5GMEC场景下的监控挑战与机遇随着5G多接入边缘计算(MEC)的普及,监控系统面临前所未有的挑战:资源碎片化:边缘节点通常部署在资源受限的硬件上(如ARM服务器、工业网关),CPU和内存容量仅为传统云服务器的1/5网络波动性:MEC设备常位于基站侧或工厂车间,面临高丢包率(5%-15%)和间歇性断网问题数据爆炸:单台MEC设备可能承载数百个物联网终
- 家庭服务具身智能机器人体系架构
硬件方面:差速移动机器人+六轴协作机械臂,软件方面选择ROS系统:底盘控制move_group,机械臂操纵MoveIt,大模型方面采用VLM+LLM:(1)视觉语言模型(VLM),用来实现环境理解与指令解析,候选模型为LLaVA和Qwen-VL。微调VLM需要2~4周,工作量主要是准备环境数据和标注期望输出。(2)大语言模型(LLM),用来实现任务分解与技能调用,候选工具有LangChain(任务
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-玩转ollama(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言在AI大模型百花齐放的时代,很多人都对新兴技术充满了热情,都想尝试一下。然而,实际上要入门AI技术的门槛非常高。除了需要高端设备,还需要面临复杂的部署和安装过程,这让很多人望而却步。在这样的背景下,Ollama的出现为广大开发者和爱好者提供了一条便捷的道路,极大地降低了应用机器学习的门槛。Ollama的优势在于其极致的简化。通过这个平台,用户可以轻松下载、运行和管理各种机器学习模型,而无需
- 阿里云大模型ACP认证模拟考试(五)
考试重要提示:答题开始即开始计时,中途不可暂停,如超时则自动提交。本次考试共计100道题目,试卷总分100分,通过考试的成绩为80分及以上。请务必在120分钟内完成交卷,由于考试过程不可暂停,请您提前规划好个人时间,若未能在规定时间内交卷,本次考试成绩将判定无效。在开始答题前,系统会进行严格的身份验证流程。届时,请您准备好身份证,拍摄并上传身份证的人像面照片,同时按照系统的指引,开启摄像头完成面部
- 【大模型记忆实战Demo】基于SpringAIAlibaba通过内存和Redis两种方式实现多轮记忆对话
Sao_E
redis数据库缓存ai语言模型
文章目录多轮对话记忆管理——基于Memory的对话记忆基于内存存储历史对话基于Redis存储历史对话多轮对话记忆管理——基于Memory的对话记忆SpringAIAlibaba共实现了三种方式:基于内存的方式基于jdbc(数据库)的方式基于redis的方式下文主要演示基于内存和redis的方式基于内存存储历史对话代码首先定义大模型的角色,一个旅游规划师设置增强拦截器接着接口传入prompt和cha
- 10分钟搞定 MinIO 单节点多磁盘部署!打造稳定高可用对象存储【二】
MinIO是一个**高性能、开源的对象存储系统**,主要用于存储非结构化数据(如图片、视频、文档、备份等),与AmazonS3完全兼容。它被广泛用于云原生应用、大数据分析、AI模型存储、容器平台(如Kubernetes)等场景。MinIO支持多种部署模式,其中:单节点单磁盘(Single-NodeSingle-Drive)模式适用于开发测试、小规模应用或资源受限的场景。它的部署简单,不依赖集群、分
- 时序数据库主流产品概览
时序数据说
时序数据库数据库物联网iotdb大数据
时序数据库(TimeSeriesDatabase,TSDB)是专为处理时间序列数据优化的数据库系统,近年来随着物联网(IoT)、金融科技、工业互联网等领域的快速发展而备受关注。本文将介绍当前主流的时序数据库产品。一、时序数据库概述时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点
- PD分离技术分析
老兵发新帖
人工智能
PD分离中的“PD”指的是大语言模型(LLM)推理过程中的两个核心阶段:Prefill(预填充)和Decode(解码)。这两个阶段在计算特性和资源需求上存在显著差异,分离部署可优化整体性能。以下是详细解析:一、PD的具体含义Prefill(预填充阶段)任务:处理用户输入的整个提示(Prompt),为所有Token生成初始的键值缓存(KVCache)和隐藏状态(HiddenStates)。特性:计算
- 大模型微调技术的详细解析及对比
老兵发新帖
人工智能大数据
以下是四种主流大模型微调技术的详细解析及对比,结合技术原理、适用场景与性能表现进行说明:1.Full-tuning(全量微调)核心原理:加载预训练模型的所有参数,用特定任务数据(通常为指令-回答对)继续训练,更新全部权重。相当于对模型整体知识结构进行重构。操作流程:加载预训练模型;用任务数据集(如分类文本)和优化目标(如最小化误差)训练;所有参数参与梯度更新。优势:模型充分学习任务特征,效果通常最
- 大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”
老兵发新帖
人工智能深度学习机器学习
大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”(如Full-tuning、Freeze-tuning、LoRA、QLoRA)是两类不同维度的概念,二者共同构成模型优化的完整流程。以下是二者的关系解析及技术对照:一、训练阶段的核心流程与目标预训练(Pre-training)目标:在无标注通用数据(如互联网文本)上训练模型,学习语言、视觉等通用特征。微调技术
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,