- OSPF(1):基础知识与数据包、状态机、工作过程
小度爱学习
网络安全从小白到大神网络
引言上一篇我们学习了RIP:RIP基础知识与配置,可是通过学习,我们发现RIP似乎只能运用在中小型网络中,那么中大型网络应该怎么做呢?这一篇博客我们就来学习OSPFOSPF---开放式最短路径优先协议动态路由优势评价维度:选路佳,收敛快,占用资源少RIP与OSPF比较1.OSPF本身是链路状态型协议,所以计算出的路径不会存在环路,并且使用带宽作为选路依据,所以,OSPF在选路的角度上优于RIP;2
- OSPF(2):基础配置、拓展配置
小度爱学习
网络安全从小白到大神网络
引言在前面的学习中我们知道了ospf的基础理论知识:ospf(1),那么这一节我们就来继续学习ospf的配置吧,而在本节我们的学习将基于以下这张图来讲解配置命令:R1、R2、R3都有一个环回接口,分别为1.1.1.1、2.2.2.2、3.3.3.3,每个物理接口的IP地址如图。由于在前面几篇内容中我们已经详细的介绍过如何配置IP地址了,所以本篇内容不再做详细展示,不会的同学可以点击参考之前的博客:
- 深度强化学习(DRL)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的演进:从符号主义到连接主义人工智能(AI)的发展经历了漫长的历程,从早期的符号主义到如今的连接主义,标志着人工智能从基于规则的推理演变到基于数据的学习。符号主义AI试图通过逻辑和符号系统来模拟人类的思维过程,而连接主义AI则侧重于构建类似于人脑神经网络的结构,通过大量数据进行训练,从而实现智能。1.2强化学习:智能体与环境的互动强化学习(ReinforcementLea
- 全面解读 Databricks:从架构、引擎到优化策略
克里斯蒂亚诺罗纳尔多阿维罗
架构spark大数据
导语:Databricks是一家由ApacheSpark创始团队成员创立的公司,同时也是一个统一分析平台,帮助企业构建数据湖与数据仓库一体化(Lakehouse)的架构。在Databricks平台上,数据工程、数据科学与数据分析团队能够协作使用Spark、DeltaLake、MLflow等工具高效处理数据与构建机器学习应用。本文将深入介绍Databricks的平台概念、架构特点、优化机制、功能特性
- 立足西安,昇腾AI为开发者留下了脚印一串
科技前沿资讯
人工智能
“人工智能的时代,我能够成为推动世界发展的一支桨吗?”“我爱西安这座城市,而且在学校学习了那么多与IT开发相关的课程,未来我很希望能留在西安发展。”西安电子科技大学计算机学院的几名学生如是对笔者说。每个人在学校里都会有迷茫,不论你所学是什么,只有站在当下,脚踏实地方可仰望苍穹。他们也是如此,面对智能时代的变数,他们渴望去做更多的尝试。4月23日,以“创未来,享非凡”为主题的昇腾AI开发者创享日首站
- AI歌手会成为主流吗?
网络安全我来了
IT技术人工智能
AI歌手会成为主流吗?在如今这个科技迅猛发展的时代,AI歌手渐渐走入我们的视野。或许你会想,AI真的能够唱歌,它的歌声能与真实歌手相媲美吗?让我们一起探索这个引人入胜的主题,看看AI歌手的发展现状、优缺点,以及它在音乐行业的未来前景。1.AI歌手的发展现状1.1技术背景我们处于一个机器学习和深度学习技术飞速发展的时代,AI歌手的诞生并非偶然。通过收集和分析大量的音乐数据,AI能够学习并模仿特定歌手
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- python的总结与心得词云设计理念_Python词云展示十九大报告
weixin_39633054
“不忘初心,牢记使命,高举中国特色社会主义伟大旗帜,决胜全面建成小康社会,夺取新时代中国特色社会主义伟大胜利,为实现中华民族伟大复兴的中国梦不懈奋斗。”十九大召开已过去近一个月,我国社会主要矛盾已经转变,中国特色社会主义进入了新时代,中国人民实现了从站起来,富起来到强起来,我们国家已经走近世界舞台的中央。国家强盛,民族自豪,为了中国梦,戮力前行。考研的同学应该此刻也在对着十九大报告埋头苦背吧,作为
- 学习AI大模型的小白入门建议和具体的学习方法推荐
aFakeProgramer
机器学习人工智能人工智能
深度思考我是一名在汽车行业工作的嵌入式系统工程师,现在我想进入人工智能领域,特别是大型语言模型。说到人工智能,我是一个完全的新手,所以我需要弄清楚从哪里开始。让我们把它分解一下。首先,我知道嵌入式系统涉及许多低级编程、微控制器、实时操作系统等。人工智能,特别是像GPT这样的大型模型,似乎处于另一端,处理高级计算、海量数据集和复杂算法。这里肯定有一个学习曲线。我可能应该从了解机器学习的基础知识开始。
- 机器学习——认识有监督学习与无监督学习
伊一大数据&人工智能学习日志
机器学习机器学习学习人工智能
目录有监督学习与无监督学习有监督学习无监督学习监督学习与无监督学习的区别有监督学习与无监督学习有监督学习和无监督学习是机器学习中的两种主要学习方式,它们的主要区别在于数据的标注情况和学习的目标。有监督学习有监督学习中,数据集中的每个样本都有明确的标签或目标输出。学习的目标是通过对有标签数据的学习,建立输入特征和输出标签之间的映射关系,以便能够对新的、未见过的输入数据预测其相应的输出标签。常见的有监
- 数据增强方法及其工具
cxr828
大数据
数据增强(DataAugmentation)是指在训练深度学习模型时,通过对现有数据进行一系列变换,从而生成新的样本。数据增强有助于增加数据的多样性,减少过拟合,提升模型的泛化能力,尤其是在数据量有限的情况下。数据增强可以应用于图像、文本、音频等多种类型的数据。以下是一些常见的、简单易行的图像数据增强方法及其具体实现步骤,这些方法也可以广泛应用于目标检测、图像分类、图像分割等任务。一、图像数据增强
- 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络深度学习cnn分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
- AI技术架构:从基础设施到应用
fuqinyijiu
AI人工智能架构
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。了解AI技术架构,不仅能帮助我们看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和存储保障。没有强大的基础设施,复杂的AI模型和应用无法落地。1.GPU(图形处理单元):并行计算的核心GPU是深度学习的核心引擎,专为大规模并行计算设计。技术优
- 单层感知机----或门实现
翔翔子1号
文章目录一、前言---感知机二、实现过程1.引入库2.或门真值表-训练集数据3.建立model,初始化定义权重、偏置、学习率4.前向传播定义5.训练过程(更新权重和偏置)6.训练模型一、前言—感知机感知机(Perceptron)模型是由美国心理学家弗兰克罗森布拉特于1957年提出的一种具有单层计算单元的神经网络。这个模型旨在建立一个线性超平面来解决线性可分问题,就如我们现在的或门分类。二、实现过程
- 关于大规模实时数仓搭建,我有几条心得...
闲鱼技术
大数据数据分析java编程语言人工智能
现状闲鱼作为一款闲置交易APP,在二手交易市场中是当之无愧的佼佼者。闲鱼从2014年诞生到现在七整年间持续增长,在这高速增长的背后带来的是每天近百亿的曝光点击浏览等数据,在这些数据规模如此庞大的背后也会带来诸多关于实时性的问题:•用户反馈商品曝光异常,如何快速定位?•产品同学圈了一批商品,如何查看该样本的实时报表?•发现问题总是晚一步,如何在第一时间获取自定义的预警信息?•......为了解决上述
- 大模型-Qwen2.5 技术报告解读
数据分析能量站
机器学习人工智能
Abstract主要是在介绍通义千问2.5(Qwen2.5)这一大型语言模型系列,涵盖了它在不同训练阶段的改进、多样化配置、可获取途径以及在各项性能评测中的出色表现等多个方面,旨在展示其先进性与实用性。训练阶段改进预训练阶段说明了Qwen2.5在预训练时对数据集进行了大规模的扩充,将高质量预训练数据集的词元数量从之前的7万亿提升到了18万亿。词元可以理解为语言模型学习时的基本语言单位(比如单词、汉
- 第八讲 SPU密态引擎
huang8666
数据分析
第八讲SPU密态引擎为什么做SPU?模型对用户加密提示词对公司加密同时保护模型和提示词为什么要隐私计算?数据是敏感的数据是重要的技术路线:多方安全计算同态加密差分隐私可信硬件挑战:易用性差,性能差需要:原生AI框架支持,编译器运行时协同优化SPU简介前端:支持主流AI前端,降低学习成本,复用AI前端能力编译器:隐私保护领域IR,复用AI编译器部分优化,加密计算的优化运行时:指令并行,数据并行,多种
- 25.1.17学习内容
The_cute_cat
学习
B-迷宫Description给定一个N×M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。Input第一行为三个正整数N,M,T,分别表示迷宫的长宽和障碍总数。第二行为四个正整数SX,SY,FX,FY,SX,SY代表起点坐标,FX,FY代
- .NET 学习:从基础到进阶的全面指南
来恩1003
.NET.net学习
.NET学习资料.NET学习资料.NET学习资料在当今软件开发的广阔领域中,.NET是一个备受瞩目的开发平台,以其强大的功能、跨平台的特性以及丰富的生态系统,吸引着众多开发者投身其中。无论是构建企业级应用、Web应用还是移动应用,.NET都展现出了卓越的能力。以下将为你详细介绍.NET的学习路径,帮助你从入门逐步走向精通。一、认识.NET:基础概念与环境搭建了解.NET框架:.NET是一个由微软开
- 关于我的博客建站经历
忆宸_1
博客前端
我是一名前端开发工程师,从大四的时候开始自学前端,荒废了三年时光,在大四的时候才算真正走进“编程”这扇大门。也是从那个时候开始学着搭建自己的个人博客,用来记录自己的学习笔记,但是却坚持不下来。而且发现一个奇怪的现象,对于搭建站点的过程我很感兴趣,内容输出却坚持不下来,这是我需要反思的地方。我也翻了翻过往的文章,大多都是记录单一知识点,而且内容很少,缺乏自己的思考。现在AI技术已经很成熟了,再记录这
- 【深度学习】AMP(Automatic Mixed Precision,自动混合精度)
shanks66
深度学习人工智能
@[toc]AMP(AutomaticMixedPrecision,自动混合精度)AMP在深度学习中,AMP(AutomaticMixedPrecision,自动混合精度)是一种通过混合使用单精度(FP32)和半精度(FP16)来加速训练并减少显存占用的技术。它能够在不显著损失模型精度的情况下,大幅提升训练速度和效率。1.什么是混合精度训练?混合精度训练是指在训练过程中同时使用两种不同的浮点数精度
- 参加2020年全国大学生机器人大赛ROBOCON的一点心得
TitaHh
经验分享robocon
大赛简介全国大学生机器人大赛Robocon赛事始于2002年,每年举办一次。大赛的冠军队代表中国参加亚洲-太平洋广播电视联盟(Asia-PacificBroadcastingUnion,ABU)主办的亚太大学生机器人大赛(ABURobocon)。青年学生的积极参与和众多机构的鼎力支持成就了大赛的健康发展。大赛目前已成为国内技术挑战性最强、影响力最大的大学生机器人赛事。每年,由ABURobocon的
- 智能化植物病害检测:使用深度学习与图像识别技术的应用
机器懒得学习
深度学习人工智能
植物病害一直是农业生产中亟待解决的问题,它不仅会影响作物的产量和质量,还可能威胁到生态环境的稳定。随着人工智能(AI)技术的快速发展,尤其是深度学习和图像识别技术的应用,智能化植物病害检测已经成为一种趋势,能够大幅提高病害检测的效率与准确性。本文将介绍如何使用深度学习和图像识别技术,通过Python编写的智能化病害检测程序,实现对植物叶片病害的自动识别与分类。1.项目背景与目标在农业领域,及时发现
- 阿里p5学习路线图?思维导图 代码示例(java 架构)
用心去追梦
学习java架构
阿里P5是指阿里巴巴集团内部对于工程师职级的一种称呼,达到P5通常意味着该工程师已经具备了较为资深的经验和技能。针对Java架构师的学习路线图,这里提供一个大致的方向以及一些可能的思维导图分支和代码示例主题。请注意,具体的晋升标准和学习路径可能会根据公司的具体要求和个人的职业发展方向有所不同。Java架构师学习路线图(简化版)1.基础知识巩固Java语言基础:深入理解面向对象编程、多线程、异常处理
- 深度学习-45-大型语言模型LLM之本地化部署运行自己的大模型
皮皮冰燃
深度学习深度学习人工智能
文章目录1深度学习1.1神经网络和深度学习1.2神经网络的工作原理1.3神经网络的专业术语2LLM概述2.1大模型的"大"是指什么?2.2训练大模型有多烧钱?2.3如何入门大模型?2.4LLM的结构2.4.1Transformer2.4.2Prompts2.4.3FineTuning3本地跑大模型3.1Ollama运行开源LLM3.1.1启动并运行3.1.2使用api访问3.1.3设置外网访问3.
- 网络安全学习 day1
whoami-4
网络安全web安全学习php
前言计算机病毒种类狠毒蠕虫病毒--->具备蠕虫特性的病毒;1.繁殖性特别强(自我繁殖);2.破坏性木马--->木马屠城故事--->木马本身不具备任何破坏性。用于控制后门的一个程序(后门--->指的是测试人员在目标系统中植入的一种隐藏式访问途径,可以使得在未来未得到授权的情况下重新访问系统)网络安全--->已经不再局限于网络世界,而是提升到了工控安全、网络空间安全。APT攻击--->高级可持续攻击;
- 深度学习笔记——前向传播与反向传播、神经网络(前馈神经网络与反馈神经网络)、常见算法概要汇总
好评笔记
深度学习笔记深度学习笔记神经网络人工智能
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文简要介绍深度学习的前向传播与反向传播,以及前馈神经网络与反馈神经网络。文章目录前向传播与反向传播前向传播(ForwardPropagation)反向传播(BackPropagation)总结神经网络简介结构类型前馈神经网络(FeedforwardNeuralNetwork,FFNN)特点常见变体反馈神经网络(Feedb
- 深度学习笔记——生成对抗网络GAN
好评笔记
深度学习笔记深度学习生成对抗网络人工智能神经网络aigcgan机器学习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍早期生成式AI的代表性模型:生成对抗网络GAN。文章目录一、基本结构生成器判别器二、损失函数判别器生成器交替优化目标函数三、GAN的训练过程训练流程概述训练流程步骤1.初始化参数和超参数2.定义损失函数3.训练过程的迭代判别器训练步骤生成器训练步骤4.交替优化5.收敛判别GAN训练过程的挑战四、GAN的常见变体
- 机器学习笔记——Boosting中常用算法(GBDT、XGBoost、LightGBM)迭代路径
好评笔记
机器学习笔记机器学习boosting人工智能深度学习AI算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文主要阐述Boosting中常用算法(GBDT、XGBoost、LightGBM)的迭代路径。文章目录XGBoost相对GBDT的改进引入正则化项,防止过拟合损失函数L(yi,y^i)L(y_i,\hat{y}_i)L(yi,y^i)正则化项Ω(fm)\Omega(f_m)Ω(fm)使用二阶导数信息,加速收敛一阶导数与二
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本