python with (as)语句实例详解
这篇文章主要介绍了python with (as)语句实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
with语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。
例1:
url = 'http://www.weather.com.cn/' + province + '/index.shtml'
with urlopen(url) as fp:
contents = fp.read().decode()
例2:
with open("aaa.txt","r") as f:
line = f.readline() # 调用文件的 readline()方法
av=""
while line:
if len(line.strip())>0:
if line.strip()[0].isdigit():
a1=line
bz=1
if line.strip()[0].isalpha():
a2=line
bz=2
if line.find(tmp_value)>-1:
if bz==2:
av=av+a1+a2
if bz==1:
line = f.readline()
av=av+a1+line
#print(line)
line=f.readline()
continue
if len(av)!=0:
print(av)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
时间: 2020-02-02
0.关于上下文管理器 上下文管理器是可以在with语句中使用,拥有__enter__和__exit__方法的对象. with manager as var: do_something(var) 相当于以下情况的简化: var = manager.__enter__() try: do_something(var) finally: manager.__exit__() 换言之,PEP 343中定义的上下文管理器协议允许将无聊的try...except...finally结构抽象到一个单独的类中,
是否可以直接使用with语句与CSV文件?能够做这样的事情似乎很自然: import csv with csv.reader(open("myfile.csv")) as reader: # do things with reader 但是csv.reader不提供__enter__和__exit__方法,所以这不行.但是我可以分两步做: import csv with open("myfile.csv") as f: reader = csv.reader(f)
一.简介 with是从Python 2.5 引入的一个新的语法,更准确的说,是一种上下文的管理协议,用于简化try-except-finally的处理流程.with通过__enter__方法初始化,然后在__exit__中做善后以及处理异常.对于一些需要预先设置,事后要清理的一些任务,with提供了一种非常方便的表达. with的基本语法如下,EXPR是一个任意表达式,VAR是一个单一的变量(可以是tuple),"as VAR"是可选的. 复制代码 代码如下: with EXPR as
with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导入后才可以使用),从 2.6 版本开始缺省可用(参考 What's new in Python 2.6? 中 with 语句相关部分介绍).with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的"清理"操作,释放资源,比如文件使用后自动关闭.线程中锁的自动获取和释放等. 术语 要
Python2.5之后引入了上下文管理器(context manager),算是Python的黑魔法之一,它用于规定某个对象的使用范围.本文是针对于该功能的思考总结. 为什么需要上下文管理器? 首先,需要思索下为什么需要引入上下文管理器. 在正常情况下,管理各种系统资源(如文件).数据库连接时,通常是先打开这些资源,执行完相应的业务逻辑,最后关闭资源. 举两个例子: 1.使用Python打开一个文件写入内容,之后需要关闭这个文件.如果不正常关闭的话可能会在文件操作时出现异常,因为系统允许你打开的
本文实例讲述了Python with语句上下文管理器.分享给大家供大家参考,具体如下: 在编程中会经常碰到这种情况:有一个特殊的语句块,在执行这个语句块之前需要先执行一些准备动作:当语句块执行完成后,需要继续执行一些收尾动作.例如,文件读写后需要关闭,数据库读写完毕需要关闭连接,资源的加锁和解锁等情况. 对于这种情况python提供了上下文管理器(Context Manager)的概念,可以通过上下文管理器来定义/控制代码块执行前的准备动作,以及执行后的收尾动作. 一.为何使用上下文管理器 1.
引言 with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导入后才可以使用),从 2.6 版本开始缺省可用(参考 What's new in Python 2.6? 中 with 语句相关部分介绍).with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的"清理"操作,释放资源,比如文件使用后自动关闭.线程中锁的自动获取和释放等. 术
在Python中的break语句终止当前循环,继续执行下一个语句,就像C语言中的break一样. break最常见的用途是当一些外部条件被触发,需要从一个循环中断退出. break语句可以在while和for循环使用. 如果正在使用嵌套循环(即一个循环里内嵌另一个循环),break语句可以用于停止最内层循环的执行,并执行外循环的下一行代码的程序. 语法 在Python中break语句的语法如下: break 流程图: #!/usr/bin/python for letter in 'Python
Python编程语言允许在一个循环内嵌套另一个循环.下面将介绍几个例子来说明这一概念. 语法 在Python中嵌套循环语句的语法如下: for iterating_var in sequence: for iterating_var in sequence: statements(s) statements(s) Python编程语言允许在一个循环内嵌套另一个循环.下面将介绍几个例子来说明这一概念. 语法 在Python中嵌套循环语句的语法如下: for iterating_var in seq
1.函数的创建 def fun(): #定义 print('hellow') #函数的执行代码 retrun 1 #返回值 fun() #执行函数 2.函数的参数 普通参数 :要按照顺序输入参数 def fun(a,b,c): print(a) print(b) print(c) return a fun(11,22,33) #输出:11 #输出:22 #输出:33 指定参数:输入参数时可以不按照顺序输入 def fun(a,b,c): print(a) print(b) print(c) re
因为是看书自学的python,开始后不久就遇到了这个引入的模块函数,且一直在IDLE上编辑了后运行,试图从结果发现它的用途,然而结果一直都是没结果,也在网上查了许多,但发现这个问题的比较详细的解释只有一个版本,大部分都是转裁和复制的.给的都是简明python教程上那个一长串代码的例子,说看了就明白了,可我看得晕头转向的还是没真正明白,只知道"sys.argv[0]表示代码本身文件路径"这点,其实还是不明其意.后来经过大量努力,多方求教才真正明悟了,谨以记录和分享,希望能从另一个角度给同
heapq 模块提供了堆算法.heapq是一种子节点和父节点排序的树形数据结构.这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2].为了比较不存在的元素被人为是无限大的.heap最小的元素总是[0]. 打印 heapq 类型 import math import random from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): ou
yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的). yield是一个表达式,是有返回值的. 当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子: 例1: >>> def mygenerator(): ... print 'start...' ... yield 5 ... >>> mygenerator()
where()的用法 首先强调一下,where()函数对于不同的输入,返回的只是不同的. 1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组 2当数组是二维数组时,满足条件的数组值返回的是值的位置索引,因此会有两组索引数组来表示值的位置 例如 >>>b=np.arange(10) >>>b array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>>np.where(b>5) (array([6, 7, 8,
如果直接在命令行中利用input和raw_input读入一个文件来处理,并且想要采用直接将文件拖入命令行来处理的方式, input方法可以直接处理,而如果要采用raw_input的方法的话,读入文件地址会带有引号,还需要自己手动去掉引号才能处理文件. 在ipython中测试一下代码:(读入一个图片文件的地址字符串) a = input("input a:\n") print "the input method: ",a b = raw_input("inp
大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return