- 零基础入门机器学习:用Scikit-learn实现鸢尾花分类
藍海琴泉
机器学习scikit-learn分类
适合人群:机器学习新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确机器学习解决什么问题,建立学习信心。机器学习定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。为什么选鸢尾花数据集:数据量小、特征明确,适合教学演示。Scikit-learn优势:提供现成算法和工具,无需从头写数学公式。二、环境准备:5分钟快速上手目的:搭建可运行的代码环境,避免卡在工具安装环
- 《基于自适应正负样本对比学习的特征提取框架》-核心公式提炼简洁版 2022年neural networks
阳光明媚大男孩
学习深度学习人工智能论文笔记
论文源地址以下是从文档中提取的关于“基于对比学习的特征提取框架(CL-FEFA)”中正负样本对比学习实现的技术细节,包括详细的数学公式、特征提取过程以及特征表示方式的说明。1.正负样本的定义与构造在CL-FEFA框架中,正负样本的定义是动态且自适应的,基于特征提取的结果,而不是预先固定的。这种自适应性是CL-FEFA区别于传统对比学习(如SimCLR、SupCon)的一个关键点。定义方式:指示矩阵
- vscode如何找letax模板_VScode如何实时预览LaTeX?
weixin_39789327
好像感觉我要火了,这个必须专业回答下啊,看完别忘了点赞啊!!用户友好型实时预览的定义即不用手动编译,不用手动刷新文档(PDF)的LaTeX写作方式.实现方式与工具目前主要用的是Latexmk这个perl脚本或者支持实时预览的Markdown编辑器.关于TeX集成系统的一个建议个人建议用TeXLive而非MikTeX甚至CTeX套装,相比而言我用TeXLive时碰到的问题最少.后两种你可能发现好好的
- 机器学习中的贝叶斯网络:如何构建高效的风险预测模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录机器学习中的贝叶斯网络:如何构建高效的风险预测模型1.背景介绍2.基本概念术语说明2.1马尔科夫随机场(MarkovRandomField)2.2条件随机场(ConditionalRandomField,CRF)2.3变量elimination算法2.4贝叶斯网络3.核心算法原理和具体操作步骤以及数学公式讲解3.1原理介绍1.贝叶斯网络基础2.贝叶斯网络构建风险
- Fatal Python error: init_stdio_encoding: failed to get the Python codec name of the stdio encoding
CCLZMY
python开发语言后端
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入D:\Metag
- LaTeX从零到精通的系统化指南
niuTaylor
学术区latex
以下是一份结构清晰的LaTeX入门指南,整合了核心知识点与实战技巧,结合官方文档与社区经验总结而成:LaTeX从零到精通的系统化指南一、环境搭建与基础配置1.安装方案TeX发行版:推荐TeXLive(跨平台)或MiKTeX(Windows优先)编辑器:VSCode+LaTeXWorkshop插件(智能补全/实时预览)或TeXstudio(新手友好)2.中文支持\documentclass{arti
- Open WebUI – 本地化部署大模型仿照 ChatGPT用户界面
m0_74824845
chatgptui
OpenWebUI介绍:OpenWebUI是一个仿照ChatGPT界面,为本地大语言模型提供图形化界面的开源项目,可以非常方便的调试、调用本地模型。你能用它连接你在本地的大语言模型(包括Ollama和OpenAI兼容的API),也支持远程服务器。Docker部署简单,功能非常丰富,包括代码高亮、数学公式、网页浏览、预设提示词、本地RAG集成、对话标记、下载模型、聊天记录、语音支持等。官网地址:ht
- 密码策略合规性检查仪表盘
闲人编程
python网络服务器异常报警实时监控多因素认证合规性密码策略
目录一、前言二、密码策略合规性背景与意义2.1密码策略的重要性2.2密码策略合规性检查的需求三、系统设计思路与架构3.1数据采集与加解密模块3.2异步任务调度与GPU加速模块3.3密码策略检查算法模块3.4GUI界面模块四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2密码强度评分算法4.3合规性检测算法4.4统计与报告生成五、异步任务调度与GPU加速设计六、GUI界面设计与功能模块七
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- css实现标题跑马灯效果
爱吃羊的狗
css前端
css实现标题跑马灯效果滚动字幕@keyframesmarquee{0%{transform:translateX(300%);}100%{transform:translateX(-300%);}}.topBar{width:100%;height:45px;line-height:45px;background:#FFE6CC;text-align:center;font-weight:500
- 什么时候用到jupyter notebook的NBConvert
老光私享
jupyterpython人工智能windows机器学习
JupyterNotebook的NBConvert功能是用来将JupyterNotebook文件转换为其他格式的工具。通常情况下,我们会用到NBConvert功能来将JupyterNotebook文件转换为HTML、LaTeX、PDF或其他文本格式。这样可以方便地将JupyterNotebook分享给他人,或者将其用于报告、文章、文档或其他写作目的。要使用NBConvert功能,需要在命令行中运行
- 详细介绍 Jupyter nbconvert 工具及其用法:如何将 Notebook 转换为 Python 脚本
源代码杀手
python使用技巧pythonjupyteride
nbconvert是Jupyter提供的一个非常强大的工具,允许用户将JupyterNotebook文件(.ipynb)转换成多种格式,包括Python脚本(.py)、HTML、PDF、LaTeX等。你可以通过命令行来运行nbconvert,也可以在JupyterNotebook中通过一些自定义的设置来实现转换。安装nbconvert通常情况下,nbconvert会随Jupyter一起安装,因此不
- 金融时间序列分析(Yahoo Finance API实战)
闲人编程
Python数据分析实战精要金融yfinance时间序列波动率数据归一化数据分析Dash
这里写目录标题金融时间序列分析(YahooFinanceAPI实战)1.引言2.项目背景与意义3.数据集介绍4.GPU加速在数据处理中的应用5.交互式GUI设计与加速处理6.系统整体架构7.数学公式与指标计算8.完整代码实现9.代码自查与BUG排查10.总结与展望金融时间序列分析(YahooFinanceAPI实战)1.引言在当今金融市场中,时间序列数据分析是理解股票、指数以及其他金融产品走势的重
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- 往adobe illustrator中添加latex字体
npupengsir
adobeillustratorui
找到如下字体所在路径/path/to/miktex/type1\public\amsfonts\cm然后copy相应的字体文件cmmi10.pfb将相应的pfb文件复制到Adobeillustrator字体文件夹:/path/to/illustrator/SupportFiles/Required/Fonts然后重启即可。
- 【大模型UI\多模型回复UI】
Ai君臣
LLMS微调ui大LLMSUI
文章目录1、开源大模型用户界面(UI)2、同时让多个模型回复UI1、开源大模型用户界面(UI)LobeChatOpenWebUI:这是一款功能丰富且用户友好的开源自托管AI界面,旨在完全离线运行。它支持多种大型语言模型(LLM),包括Ollama和兼容OpenAI的API。OpenWebUI提供直观的界面,支持多模型和多模态交互,具有全面的Markdown和LaTeX支持,以及本地RAG集成等功能
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 自动化特征选择:基于模型重要性的递归消除原理与实战指南
燃灯工作室
Ai自动化运维
一、技术原理与数学公式1.1递归特征消除(RFE)核心思想J(S)=∑i=1n∣wi∣(特征重要性评分)J(S)=\sum_{i=1}^n|w_i|\quad(特征重要性评分)J(S)=i=1∑n∣wi∣(特征重要性评分)Sk+1=Sk−argminfJ(Sk∖{f})(迭代消除策略)S_{k+1}=S_k-\arg\min_{f}J(S_k\setminus\{f\})\quad(迭代消除策
- 边缘设备模型量化部署:TFLite INT8校准实现细节深度解析
燃灯工作室
Ai人工智能机器学习
一、技术原理与数学公式INT8量化的核心是通过线性映射将浮点数值范围([-max,max])映射到8位整数范围([-128,127])。校准过程通过分析真实数据分布确定最优缩放因子(scale)和零点(zeropoint):量化公式:Q=round(float_valuescale)+zero_pointQ=round(\frac{float\_value}{scale})+zero\_point
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- TeXstudio 编写基本的 Latex (备忘)
波格斯特
Latex
目录0.TeXstudio设置1.基本页面简单的一个例子来点章节再加个简单封皮加个目录小细节0.TeXstudio设置保证为UTF-8在选项卡选项中设置编译器为XeLaTeX1.基本页面简单的一个例子\documentclass{ctexart}%使用中文版的article文档类型排版\begin{document}hello,world你好,世界\end{document}来点章节\docume
- 十种处理权重矩阵的方法及数学公式
阳光明媚大男孩
矩阵机器学习线性代数
1.权重归一化(WeightNormalization)目的:通过分离权重向量的范数和方向来加速训练。公式:对于权重向量w\mathbf{w}w,归一化后的权重w′\mathbf{w}'w′为:w′=w∥w∥\mathbf{w}'=\frac{\mathbf{w}}{\|\mathbf{w}\|}w′=∥w∥w其中∥w∥\|\mathbf{w}\|∥w∥是w\mathbf{w}w的欧几里得范数。2
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- mathpix snpping公式输入不限次数的方法
冰虺
编辑器
在写论文时,不可避免的需要输入大量的公式,为了减少公式输入所需的时间,mathpixsnpping这款软件,带来了极大的方便。仅需截图,就能快速输入好数学公式(化学式)。但由于已经过了推广的时期,该软件已经开始收费了!!!!!!为了不限次数输入,特地提供以下开源网站,供大家使用!!!!!使用方法:1、win+shift+s将公式截取复制到粘贴板2、打开以下网站在线LaTeX公式编辑器-编辑器3、将
- 仿射变换矩阵应用
点云学习
c++pcl点云处理算法pcl点云处理3D视觉
目录1原理介绍2数学公式推导3计算流程4示例代码仿射变换是计算机视觉、图像处理和点云处理中常用的几何变换之一。它不仅包括旋转和平移,还包括缩放和剪切等线性变换。仿射变换保持了点、直线和平面的平行性。1原理介绍仿射变换在三维空间中通常由一个3×3的线性变换矩阵和一个3×1的平移向量组成。通过使用齐次坐标,我们可以将仿射变换表示为一个4×4矩阵:其中:A是一个3×3的线性变换矩阵(包含旋转、缩放、剪切
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- K-means 算法核心原理
code 旭
AI人工智能学习算法kmeans机器学习
一、K-means算法核心原理1.算法目标将n个样本划分到k个簇中,使得每个样本到所属簇中心的距离平方和最小。2.数学公式目标函数(SSE,簇内平方误差):J=∑i=1k∑x∈Ci∥x−μi∥2J=\sum_{i=1}^k\sum_{x\inC_i}\|x-\mu_i\|^2J=i=1∑kx∈Ci∑∥x−μi∥2其中:CiC_iCi表示第iii个簇μi\mu_iμi表示第iii个簇的质心二、算法步
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST