- 自定义数据集 ,使用朴素贝叶斯对其进行分类
〖是♂我〗
pythonnumpy开发语言
代码:#导入必要的库importnumpyasnpimportmatplotlib.pyplotasplt#定义类1的数据点,每个数据点是二维的坐标class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])#定义类2的数据点,每个数据点是二维的坐标class2_poi
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
Z211613347
python
importnumpyasnpimportmatplotlib.pyplotasplt#1.散点输入class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- 使用朴素贝叶斯对自定义数据集进行分类
Luzem0319
人工智能机器学习
准备自定义数据集首先,需要一个自定义数据集来进行分类。创建一个简单的二维数据集,其中每个样本有两个特征,并且属于两个类别之一。importnumpyasnpimportpandasaspd#创建自定义数据集np.random.seed(42)num_samples=100#生成特征数据X=np.random.rand(num_samples,2)#生成标签数据(0或1)y=np.where(X[:
- 使用支持向量机和朴素贝叶斯对文本分类
SSeaflower
支持向量机分类算法机器学习python
一、支持向量机文本分类1.1支持向量机分类器(SVC)支持向量机分类器(SupportVectorClassifier),缩写为SVC。SVC是sklearn.svm模块的一部分,提供了对支持向量机(SVM)算法的实现。SVM是一种监督学习模型,用于分类和回归任务。SVC是SVM用于分类的实现。1.2SVC的用法及参数通过以下方式创建SVC对象并进行训练:fromsklearn.svmimport
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- 后端架构师技术图谱
dreamcasher
架构师后端
《后端架构师技术图谱》(转)数据结构队列集合链表、数组字典、关联数组栈树二叉树完全二叉树平衡二叉树二叉查找树(BST)红黑树B-,B+,B*树LSM树BitSet常用算法排序、查找算法选择排序冒泡排序插入排序快速排序归并排序希尔排序堆排序计数排序桶排序基数排序二分查找Java中的排序工具布隆过滤器字符串比较KMP算法深度优先、广度优先贪心算法回溯算法剪枝算法动态规划朴素贝叶斯推荐算法最小生成树算法
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例
Lossya
机器学习python人工智能算法朴素贝叶斯
引言文章目录引言一、朴素贝叶斯网络1.1基本概念1.1.1节点1.1.2边(Edges)1.1.3条件独立性1.2特点1.2.1结构简单1.2.2易于理解和实现1.2.3计算效率高1.3应用1.4数学表示1.5局限性二、朴素贝叶斯网络在python中的实例2.1实例背景2.2实现步骤2.3python代码2.4代码解释三、概率推断在医疗领域中的使用3.1概率推断在医疗领域的使用3.2自动化推断的优
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- 利用贝叶斯和决策树 来进行医疗诊断的
杨航 AI
决策树算法机器学习
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。以下是一个基本的实现思路:数据准备:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。贝叶斯分类器:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。决策树:我们使用决策
- Python实战:爬取小红书评论并进行情感分析
Mr 睡不醒
python开发语言机器学习
在这篇博客中,我们将探讨如何使用Python爬取小红书的评论数据,并使用朴素贝叶斯分类器进行情感分析。本教程将涵盖从数据采集到模型训练和预测的完整流程。准备工作首先,确保你的Python环境中已安装以下库:pipinstallpandassklearnrequestsbeautifulsoup4seleniumselenium需要环境搭建爬取小红书评论我们将使用requests和Beautiful
- 【机器学习理论基础】一文看尽朴素贝叶斯算法
大数据AI
MachineLearning机器学习
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X)Y=f(X)Y=f(X),要么是条件分布P(Y∣X)P(Y|X)P(Y∣X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出YYY和特征XXX的联合分布P(X,Y)P(X
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 朴素贝叶斯算法
YuanDaima2048
机器学习算法学习算法机器学习人工智能深度学习pythonsklearn
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:机器学习实战工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤等领域。朴素贝叶斯算法简单易懂,其核心思想是假设在给定目标值时,各个属性之间相互独立。在实际应用中,朴素贝叶斯算法在垃圾邮件过滤中表现出色。它不仅准确率高,而且速度快
- 21丨朴素贝叶斯分类(下):如何对文档进行分类?
张九日zx
朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。sklearn机器学习包sklearn的全称叫Scikit-learn,它给我们提供了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴
- 机器学习:多项式模型朴素贝叶斯分类器(原理+python实现)
DocPark
机器学习python
简介多项式朴素贝叶斯也是多用于文本处理,其原理和计算的流程和伯努利朴素贝叶斯基本一致,唯一的区别在于单词的计数方式,由《伯努利朴素贝叶斯》一文可知,在文本处理的环节中,我们将单词是否出现在词组作为特征,但在多项式朴素贝叶斯中,我们将单词在词组中出现的次数作为特征,因此只需要更改文中setOfWords2Vec的函数即可,变成如下方式:defbagOfWords2VecMN(vocabList,in
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- 【机器学习笔记】贝叶斯学习
住在天上的云
机器学习机器学习笔记学习贝叶斯学习人工智能
贝叶斯学习文章目录贝叶斯学习1贝叶斯学习背景2贝叶斯定理3最大后验假设MAP(MaxAPosterior)4极大似然假设ML(MaximumLikelihood)5朴素贝叶斯NB6最小描述长度MDL1贝叶斯学习背景试图发现两件事情的关系(因果关系,先决条件&结论)。执果索因:肺炎→肺癌?不好确定,换成确诊肺癌得肺炎的概率2贝叶斯定理贝叶斯定理是一种用先验慨率来推断后验慨率的公式,它可以表示为:P(
- sklearn中一些简单机器学习算法的使用
橘柚jvyou
机器学习sklearn算法
目录前言KNN算法决策树算法朴素贝叶斯算法岭回归算法线性优化算法前言本篇文章会介绍一些sklearn库中简单的机器学习算法如何使用,一些注释已经写在代码中,帮助一些小伙伴入门sklearn库的使用。注意:本篇文章只涉及到如何使用,并不会讲解原理,如果想了解原理的小伙伴请自行搜索其他技术博客或者查看官方文档。KNN算法fromsklearn.datasetsimportload_iris#导入莺尾花
- 【初中生讲机器学习】5. 从概率到朴素贝叶斯算法,一篇带你看明白!
Geeker · LStar
人工智能机器学习算法机器学习算法人工智能分类算法监督学习朴素贝叶斯
创建时间:2024-02-04最后编辑时间:2024-02-05作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!上两篇文章中,我详细讲了支持向量机(SVM)算法的原理,并用一个实例实现了它。在这一篇和下一篇中,我将分别讲解&实现朴素
- 【初中生讲机器学习】6. 分类算法中常用的模型评价指标有哪些?here!
Geeker · LStar
人工智能机器学习算法机器学习人工智能分类算法评价指标监督学习
创建时间:2024-02-07最后编辑时间:2024-02-09作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!前面已经讲了两个分类算法(SVM&朴素贝叶斯),其中在【初中生讲机器学习】4.支持向量机算法怎么用?一个实例带你看懂!中
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR