- 2280将数组和减少的最少操作次数(贪心算法) 分析+源码+证明
懒羊羊大王&
算法(贪心算法)c++(初阶)贪心算法算法
题目解析请你返回将nums数组和至少减少一半的最少操作数。这句话相当于最后数组和小于等于最开始数组和的一半。1.1算法原理解法:贪心+大根堆(堆顶为最大值)具体策略:每次挑选数组中最大的数,进行减半,直到数组和减少到至少一半为止。举例:初始nums的和为5+19+8+1=33。以下是将数组和减少至少一半的一种方法:选择数字19并减小为9.5。选择数字9.5并减小为4.75。选择数字8并减小为4。最
- DeepSeek:中国大模型 “破壁者” 引发的四大产业地震
赵同学爱学习
人工智能chatgptDeepSeek语言模型大模型开源
导语:当全球AI产业还在为GPT-4的1750亿参数惊叹时,中国团队DeepSeek以颠覆性创新撕开了大模型领域的“铁幕”。这款首个引发国际学术界集体关注的中文大模型,正从技术底层重构产业规则,其冲击波已蔓延至硬件、软件、商业模式的每个角落。一、算力霸权瓦解:低成本训推技术改写游戏规则1.1训练成本“悬崖式下降”DeepSeek通过混合专家架构(MoE)动态路由算法,在同等效果下将模型激活参数压缩
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 1046. 【USACO题库】3.2.2 Stringsobits__01串
(❁´◡`❁)Jimmy(❁´◡`❁)
粉丝才可以看的NC题解C++算法
题目:题目描述考虑排好序的N(N<=31)位二进制数。你会发现,这很有趣。因为他们是排列好的,而且包含所有可能的长度为N且含有1的个数小于等于L(L<=N)的数。你的任务是输出第I(1<=I<=长度为N的二进制数的个数)大的,长度为N,且含有1的个数小于等于L的那个二进制数。输入从文件kimbits.in中读入数据。共一行,用空格分开的三个整数N,L,I。输出输出到文件kimbits.out中。共
- 大语言模型的潜力是否被高估
dev.null
AI#NLP语言模型人工智能机器学习
关于大语言模型(LLM)的潜力是否被高估,目前学术界和产业界存在显著分歧。以下从技术能力、应用局限性和未来发展方向三个方面综合分析:一、技术能力的争议:潜力与局限并存对现实世界的理解与模拟MIT的研究表明,LLM在训练过程中可能自发形成对现实世界的内部模拟。例如,通过解决卡雷尔编程谜题(KarelPuzzle),模型在没有直接接触环境信息的情况下,正确率从初始的随机指令提升至92.4%,并展现出对
- 【贪心算法】将数组和减半的最小操作数
I_Am_Me_
贪心算法贪心算法算法
1.题目解析2208.将数组和减半的最少操作次数-力扣(LeetCode)2.讲解算法原理使用当前数组中最大的数将它减半,,直到数组和减小到一半为止,从而快速达到目的重点是找到最大数,可以采用大根堆快速达到目的3.代码classSolution{publicinthalveArray(int[]nums){PriorityQueueheap=newPriorityQueueb.compareTo(
- PO、DTO、VO等9大对象划分详解,让你的代码不再“一团糟”
码熔burning
SpringBootJavaJavaSpringBoot
目录一、PO(PersistentObject)二、DO(DomainObject)三、TO(TransferObject)四、DTO(DataTransferObject)五、VO(ViewObject)六、BO(BusinessObject)七、POJO(PlainOrdinaryJavaObject)八、DAO(DataAccessObject)九、Entity对象转换与使用场景总结何时使用
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- 深入浅出C++ STL:统领STL全局
有梦想的电信狗
《C++语法精粹》——c++stl数据结构算法开发语言idevisualstudio
深入浅出C++STL:统领STL全局深入浅出C++STL:统领STL全局github主页地址前言一、STL的前世今生1.1什么是STL?1.2STL版本演进二、STL六大核心组件详解2.1容器(Containers)容器性能对照表2.2算法(Algorithms)2.3迭代器(Iterators)2.4仿函数(Functors)2.5适配器(Adapters)2.6空间配置器(Allocators
- 老板既要又要还要......我用Doris+Hudi把不可能变成了日常
一臻数据
大数据Doris大数据数据分析数据库
老板既要又要还要......我用Doris+Hudi把不可能变成了日常探索Doris与Hudi的完美融合智能查询优化华丽转身-不止于快的进化Doris+Hudi湖仓一体的"艺术之美"大数据江湖中流传着这样一个传说:有一位数据科学家,整日为查询性能发愁,夜夜加班优化SQL。直到有一天,他发现了Doris与Hudi的"天作之合",顿时开启了"飞毛腿"模式——查询速度快得连老板都不敢相信!如今,这个传说
- 【原创】Linux上普通用户安装、运行nmap功能扫描指定IP地址上的端口
赵庆明老师
Linuxlinuxtcp/ip运维
由于是普通用户,因此权限受限,基本上不用考虑常规途径安装了。加上服务器操作系统可能比较老,如果使用源码编译的话,可能会有一大堆编译错误,且由于权限问题,无法解决。这里我要用到一个工具:nmap,扫描某主机。登录nmap官网https://nmap.org/点击下载https://nmap.org/download.html点击Linux版的nmap,下载rpm安装包下载完后,上载到服务器。使用以下
- 六月份阶段性大总结之Doris/Clickhouse/Hudi一网打尽
王知无(import_bigdata)
大数据编程语言人工智能java数据分析
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!这是个阶段性小总结,后面会持续更新。ClickHouse「Clickhouse系列」分布式表&本地表详解「ClickHouse系列」ClickHouse之MergeTree原理「ClickHouse系列」Replication机制详解「ClickHouse系列」ClickHouseSQL基本语法和导入导出实战「C
- 2025年开源大模型全景:语言、多模态与开发工具的前沿探索
软件职业规划
开源
语言类开源大模型1.Llama系列开发者:Meta发布时间:2024年7月参数量:8B、70B、405B特点:Llama系列模型以其强大的多语言支持和广泛的自然语言处理能力而闻名。它支持文本生成、问答、翻译等多种任务,尤其在处理长篇文本时表现出色,支持高达128K的上下文长度。Meta与超过25个合作伙伴共同推出该系列模型,包括亚马逊云科技、Databricks和英伟达等,推动了开源大模型在工业界
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- 数字隐形盾牌:日常场景下的网络安全实践
安全防护
一、网络威胁:潜伏在屏幕后的"数字劫匪"2025年全球每11秒发生一次勒索攻击,每天新增45万个钓鱼网站,你的手机里可能正躺着3-5个高危漏洞。这些数据揭示了一个残酷现实:我们正生活在一个"数字丛林时代"。三大致命威胁:钓鱼攻击升级版:骗子不仅伪造银行邮件,现在会克隆公司高管的微信,用AI模仿老板声音要求转账**Wi-Fi陷阱:**商场免费Wi-Fi可能在15秒内窃取你的支付密码,机场充电桩可能成
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 8051汇编--条件转移指令
wperseverance
51单片机51单片机
在8051汇编语言中,控制转移指令用于改变程序的执行顺序,主要包括无条件转移、条件转移和调用/返回指令。以下是对这些指令的总结:一、无条件转移指令LJMP(LongJump)•功能:长转移,可以跳转到同一程序空间中的任何地址。•指令格式:LJMPaddr16,其中addr16是16位的目标地址。•特点:跳转范围大,适用于跨段跳转。•使用场景:当需要跳转到较远的地址时使用。SJMP(ShortJum
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- QLineEdit控件:基础用法、样式表与扩展应用
Quz
掌握Qt控件:从入门到精通qt
目录前言1.基础用法1.1创建QLineEdit1.2常用属性设置2.样式表美化2.1基础样式2.2动态效果2.3自定义图标3.信号与槽3.1常用信号3.2实时输入处理4.高级功能4.1输入验证4.2自动补全参考前言QLineEdit是Qt中最常用的输入控件之一,广泛应用于表单输入、搜索框等场景。本文将全面解析QLineEdit的使用方法,涵盖以下内容:基础用法:文本输入、占位符、输入限制样式表美
- 人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236
添柴程序猿
大模型开发&神经网络人工智能大模型工作流COT思维链ReAct自我反思优化大模型工作流开发
#清理环境信息,与上课内容无关importosos.environ["LANGCHAIN_PROJECT"]=""os.environ["LANGCHAIN_API_KEY"]=""os.environ["LANGCHAIN_ENDPOINT"]=""os.environ["LANGCHAIN_TRACING_V2"]=""#安装所需要使用的包!pipinstallopenailanggraphA
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 非对称加密:SSL/TLS握手的数学基石
安全
1.密钥交换的密码学困局在未加密的HTTP通信中,攻击者可通过中间人攻击(MITM)窃听或篡改数据。SSL/TLS协议的核心挑战在于:如何在不安全的信道上建立安全通信?这本质上是一个“密钥分发问题”——若使用对称加密(如AES),双方需要共享同一密钥,但密钥本身如何安全传递?非对称加密的突破性在于公钥与私钥的分离。以RSA算法为例,其数学基础是大质数分解难题:选择两个大质数p和q(通常≥2048位
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo