“大数据分析挖掘-基于Hadoop/Mahout/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训

随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。为解决广大系统设计人员深入研究与开发大数据技术的需要,培训中心特在“大数据处理技术-基于Hadoop/Yarn的实战”课程的基础上,针对已有或即将建立Hadoop/Yarn集群,拥有海量数据,需要做用户推荐、产品聚类,信息分类等大数据分析用户,举办“大数据分析挖掘-基于Hadoop/Mahout/MLlib的大数据挖掘”培训班,具体事宜通知如下:

 

一、培训对象

1,系统架构师、系统分析师、高级程序员、资深开发人员。

2,牵涉到大数据处理的数据中心运行、规划、设计负责人。

3,政府机关,金融保险、移动和互联网等大数据来源单位的负责人。

4,高校、科研院所牵涉到大数据与分布式数据处理的项目负责人。

 

二、学员基础

1,对IT系统设计有一定的理论与实践经验。

2,数据仓库与数据挖掘处理有一定的基础知识。

3,对Hadoop/Yarn/Spark大数据技术有一定的了解。

 

三、师资

由业界知名大数据专家亲自授课:

杨老师   主要研究网络信息分析以及云计算相关技术,长期从事通信网管系统、网络信息处理、商务智能(BI)以及电信决策支持系统的研究开发工作,主持和参与了多个国家和省部级基金项目,具有丰富的工程实践及软件研发经验。

 

四、培训要点

互联网点击数据、传感数据、日志文件、具有丰富地理空间信息的移动数据和涉及网络的各类评论,成为了海量信息的多种形式。当数据以成百上千TB不断增长的时候,我们在内部交易系统的历史信息之外,需要一种基于大数据分析的决策模型和技术支持。

大数据通常具有:数据体量(Volume)巨大,数据类型(Variety)繁多,价值(Value)密度低,处理速度(Velocity)快等四大特征。如何有效管理和高效处理这些大数据已成为当前亟待解决的问题。大数据处理意味着更严峻的挑战,更好地管理和处理这些数据也将会获得意想不到的收获。

Google发布的GFS和MapReduce等高可扩展、高性能的分布式大数据处理框架,证明了在处理海量网页数据时该框架的优越性。在此基础上,Apache Hadoop开源项目开发团队,克隆并推出了Hadoop/Yarn系统。该系统已受到学术界和工业界的广泛认可和采纳,并孵化出众多子项目(如Hive,Zookeeper和Mahout等),日益形成一个易部署、易开发、功能齐全、性能优良的系统。在此基础上,以Berkley牵头设计的Spark/BDAS技术,实现了内存级别的分布式处理模式,使用户无需关注复杂的内部工作机制,无需具备丰富的分布式系统知识及开发经验,即可实现大规模分布式系统的部署与大数据的并行处理。

本课程从大数据挖掘分析技术实战的角度,结合理论和实践,全方位地介绍Mahout和 MLlib等大数据挖掘工具的开发技巧。本课程涉及的主题包括:大数据挖掘及其背景,Mahout和 MLlib大数据挖掘工具,推荐系统及电影推荐案例,分类技术及聚类分析,以及与流挖掘和Docker技术的结合,分析了大数据挖掘前景分析。

本课程教学过程中还提供了案例分析来帮助学员了解如何用Mahout和 MLlib挖掘工具来解决具体的问题,并介绍了从大数据中挖掘出有价值的信息的关键。

本课程不是一个泛泛的理论性、概念性的介绍课程,而是针对问题讨论Mahout和 MLlib解决方案的深入课程。教师对于上述领域有深入的理论研究与实践经验,在课程中将会针对这些问题与学员一起进行研究,在关键点上还会搭建实验环境进行实践研究,以加深对于这些解决方案的理解。通过本课程学习,希望推动大数据分析挖掘项目开发上升到一个新水平。

 

五、培训内容

第一讲大数据挖掘及其背景

  1)数据挖掘定义

  2)Hadoop相关技术

  3)大数据挖掘知识点

第二讲 MapReduce/DAG计算模式

  1)分布式文件系统DFS

  2)MapReduce计算模型介绍

  3)使用MR进行算法设计

  4)DAG及其算法设计

第三讲 云挖掘工具Mahout/MLib

   1)Hadoop中的Mahoutb介绍

   2)Spark中的Mahout/MLib介绍

   3)推荐系统及其Mahout实现方法

   4)信息聚类及其MLlib实现方法

   5)分类技术在Mahout/MLib中的实现方法 

第四讲 推荐系统及其应用开发

   1)一个推荐系统的模型

   2)基于内容的推荐

   3)协同过滤

   4)基于Mahout的电影推荐案例

第五讲 分类技术及其应用

  1)分类的定义

  2)分类主要算法

  3)Mahout分类过程

  4)评估指标以及评测

  5)贝叶斯算法新闻分类实例

第六讲 聚类技术及其应用

   1)聚类的定义

   2)聚类的主要算法

  3)K-Means、Canopy及其应用示例

  4)Fuzzy K-Means、Dirichlet及其应用示例

  5)基于MLlib的新闻聚类实例

第七讲 关联规则和相似项发现

   1)购物篮模型

   2)Apriori算法

   3)抄袭文档发现

   4)近邻搜索的应用

第八讲 流数据挖掘相关技术

   1)流数据挖掘及分析

   2)Storm和流数据处理模型

   3)流处理中的数据抽样

   4)流过滤和Bloom filter

第九讲 云环境下大数据挖掘应用

   1)与Hadoop/Yarn集群应用的协作

   2)与Docker等其它云工具配合

   3)大数据挖掘行业应用展望

 

六、培训目标

1, 全面了解大数据处理技术的相关知识。

2,学习Hadoop/Yarn/Spark的核心数据分析技术。

3,深入学习Mahout/MLlib挖掘工具在大数据中的使用。

4,掌握Storm流处理技术和Docker等技术与大数据挖掘结合的方法。

 

七、培训时间、地点

具体以发布为主。

 

八、证书

培训结束,颁发中科院计算所职业培训中心“大数据分析挖掘-基于Hadoop/Mahout/MLlib的大数据挖掘”结业证书。

 

九、费用

培训费:5800元/人(含教材、证书、午餐、学习用具等)。住宿协助安排,费用自理。

你可能感兴趣的:(培训课程,公开课,企业培训,大数据,hadoop,spark)