- 解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
紫雾凌寒
AI炼金厂#机器学习算法机器学习算法分类朴素贝叶斯python深度学习人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、主成分分析(PCA)、神经网络。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这众多的算法中,朴素贝叶斯算法
- 解锁机器学习核心算法 | 线性回归:机器学习的基石
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习线性回归人工智能深度学习aipython
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 杰和推出面向人工智能应用的AI服务器
weixin_34211761
在这个数据爆炸的年代,我们获取数据的难度大大降低,但要获取数据的价值仅依靠简单的数据分析是不可行的。如果将大数据看作一个产业,那么数据深挖(挖掘)就是其中一项核心技术,数据深挖(挖掘)通常与计算机科学有关,如数据统计、数据检索、分析处理、机器学习等技术,而这些恰好是人工智能技术的优势。人工智能一直都是备受关注的热门领域,更是被认为是第四次工业革命。随着技术的不断开发及深入优化,人工智能以迅雷不及掩
- 机器学习数学通关指南——微积分基本概念
Shockang
机器学习数学通关指南机器学习微积分数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文函数一、函数的定义与本质映射关系:函数是实数集到实数集的映射(或更一般地,非空数集到数集的映射)。规范形式:f:D→Rf:D\to\mathbb{R}f:D→R,其中D⊆RD\subseteq\mathbb{R}D⊆R为定义域
- SVM(支持向量机)原理及数学推导全过程详解
子木呀
支持向量机人工智能分类算法SVM
由于格式问题,为方便阅读,请点击下方链接访问原文点击此处访问原文点击此处访问原文点击此处访问原文点击此处访问原文关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前辈们的文章对SVM进行了一个整理,把看的过程中产生的一些问题也进行了解答。本来想着总结得简洁明了又易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 智能边缘计算:开启智能新时代
livefan
人工智能
什么是智能边缘计算?在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算可以减少数据传输的延迟,提高响应速度,增强数据处理的实时性和效率。而智能边缘计算,是边缘计算架构在涉及数据分析、机器学习或人工智能的工作负载中的应用。一般来说,边缘架构是一种将数据或应用程序放置在网络边缘的
- 多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221
level2Tick
A股level2历史数据金融数据库
多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221采用Level2逐笔成交与逐笔委托的详细记录,这种毫秒级别的数据能揭露众多关键信息,如庄家意图、虚假交易,使所有交易行为透明化。这对交易大师分析主力习性大有裨益,对人工智能进行机器学习也非常合适,数据量大且精确。以下是今日根据Level2逐笔成交与委托数据观察到的部分股票现象:level2逐笔成交逐笔委托数据下载链接:https:
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 物联网数据采集平台【物联网毕业论文】
算法与数据
物联网
物联网技术与数据分析|物联网系统设计|模型构建✨专业领域:物联网系统架构设计智能设备与传感器网络数据采集与处理物联网大数据分析智能家居与工业物联网边缘计算与云计算物联网安全与隐私保护擅长工具:Python/R/Matlab数据分析与建模物联网平台与设备编程数据流与实时监控系统设计机器学习与预测模型应用物联网协议(MQTT,CoAP,HTTP)物联网数据可视化工具✅物联网专业题目与数据:物联网毕业论
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- AI人工智能带给企业什么影响
雪叶雨林
AI人工智能ai
在科技日新月异的今天,人工智能(AI)正以前所未有的速度和广度渗透到各行各业,对企业运营产生了深远的影响。这种影响不仅体现在技术层面的革新,更在于企业组织结构、工作流程、决策模式等多个维度的深刻变革。一、优化决策过程,提升精准度人工智能通过大数据分析和机器学习技术,能够处理和分析海量信息,为企业提供更为精准、实时的决策支持。相较于传统的人工分析,AI能够识别出数据中的微妙模式和趋势,帮助企业预见市
- 编程小白冲Kaggle每日打卡(14)--kaggle学堂:<机器学习简介>你的第一个机器学习模型
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能
Kaggle官方课程链接:YourFirstMachineLearningModel本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。YourFirstMachineLearningModel建立你的第一个模型。好哇!选择建模数据你的数据集有太多的变量,你无法理解,甚至无法很好地打印出来。你如何将如此庞大的数据量缩减到你能理解的程度?我们将从使用直觉选择几个变量开始。后续课程将向您展示自动
- 微软Copilot官网入口- Copilot中文版国内使用入口
人工智能
微软Copilot:你的AI副驾驶,赋能未来工作与生活✨在数字化浪潮席卷全球的今天,效率和创造力已成为个人和企业成功的关键驱动力。微软Copilot应运而生,它不仅仅是一款软件,更像是一位人工智能副驾驶,旨在通过强大的AI技术,解放你的双手,激发你的灵感,助你驰骋于工作和生活的各个领域。核心功能:不止于智能,更在于赋能微软Copilot的核心在于其对自然语言处理(NLP)和机器学习(ML)的深度融
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- 【机器学习与数据挖掘实战】案例14:基于随机森林分类器的汽车公司客户细分预测
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘随机森林人工智能分类算法
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- Python的那些事第二十八篇:数据分析与操作的利器Pandas
暮雨哀尘
Python的那些事信息可视化python开发语言pandas数据分析数据处理
Pandas:数据分析与操作的利器摘要Pandas是基于Python的开源数据分析库,广泛应用于数据科学、机器学习和商业智能等领域。它提供了高效的数据结构和丰富的分析工具,能够处理结构化数据、时间序列数据以及复杂的数据转换任务。本文从Pandas的基础概念入手,深入探讨其核心数据结构(Series和DataFrame),并结合实际案例,详细阐述数据导入导出、数据清洗、数据处理、分组聚合、数据可视化
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- TensorFlow 2 来训练一个线性回归模型
大数据张老师
tensorflow线性回归人工智能
本节将通过一个简单的示例,带领大家了解如何使用TensorFlow2来训练一个线性回归模型。这个例子将帮助大家掌握如何从数据处理、模型构建、训练到评估等步骤,逐步实现一个基础的机器学习任务。下面是代码的详细讲解。importtensorflowastfimportpandasaspd首先,我们导入了TensorFlow和Pandas库。TensorFlow用于构建和训练我们的机器学习模型,Pand
- MySQL索引、视图与范式:高效数据库设计与优化秘籍
rain雨雨编程
Java编程数据库mysql索引视图范式
♂️个人主页:@rain雨雨编程微信公众号:rain雨雨编程✍作者简介:持续分享机器学习,爬虫,数据分析希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录mysqlday04课堂笔记1、索引(index)1.1、什么是索引?1.2、索引的实现原理?1.3、添加索引的注意事项1.4、索引怎么创建?删除?语法是什么?1.5、如何查看某select中是否使用了索引1.
- 【机器学习算法选型:分类与回归】 常见分类算法介绍
云博士的AI课堂
哈佛博后带你玩转机器学习机器学习分类回归分类与回归机器学习算法选型深度学习人工智能
第2节:常见分类算法介绍在机器学习中,分类算法是用于预测一个样本所属类别的工具。无论是在金融风控、医疗诊断、图像识别还是推荐系统等领域,分类算法都扮演着至关重要的角色。不同的分类算法各自有不同的优缺点和应用场景,因此了解这些算法的特点及其适用条件,是构建高效分类模型的关键。1.逻辑回归(LogisticRegression)介绍逻辑回归是一种广泛应用于二分类问题的线性模型,其目标是根据输入特征预测
- 人工智能学习框架
静默.\\
人工智能学习
人工智能学习框架概述随着人工智能技术的飞速发展,选择合适的机器学习或深度学习框架对于项目的成功至关重要。这些框架提供了强大的工具和库,使得开发者能够更高效地构建、训练和部署模型。目前市面上有许多流行的AI学习框架,每种框架都有其独特的特点和适用场景。首先,TensorFlow是由Google开发的一个开源机器学习框架,支持从简单的线性回归到复杂的神经网络等多种模型类型。它以其高度灵活性和可扩展性著
- 联邦学习: 统一数据协作和隐私保护的技术解决之道
小牍
大数据分布式数据安全
联邦学习:统一数据协作和隐私保护的技术解决之道1.数据价值和隐私2.隐私计算技术安全多方计算可信执行环境联邦学习3.联邦学习的拓展分布式机器学习联邦学习和传统分布式系统的差异联邦学习带来的挑战安全性补充实际案例讲解总结1.数据价值和隐私为什么需要隐私计算呢?数据的产生过程是分散的,数据具有天然的割裂性。不同类型的公司提供不同的业务和服务,产生的数据类型也是不同的,例如社交公司产生用户大量的社交数据
- 人工神经网络ANN入门学习笔记
cs_ning
ANN学习笔记学习笔记机器学习
研究生写论文需要,先快速学习了机器学习的内容,现在需要继续深入学习人工神经网络ANN的内容,以下是个人的学习笔记,欢迎交流、请多多指正!以下是参考的学习资料/网站/笔记来源(侵权删):【ANN回归预测】基于ANN实现多变量预测附Matlab代码_ann实现回归-CSDN博客ANN人工神经网络:从基础认知到现实理解-CSDN博客常用神经网络-ANN/CNN/RNN/GAN/Transformer_a
- 消融实验(Ablation Study):模型优化的关键分析方法
烟锁池塘柳0
深度学习人工智能计算机视觉深度学习
文章目录消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?为什么要做消融实验?实验步骤典型实验案例案例1:图像分类模型案例2:目标检测模型实验结果解读要点消融实验的意义总结消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?消融实验(AblationStudy)是机器学习领域用于评估模型组件有效性的重要研究方法。通过逐步移除模型的某些模块/特征
- 使用Scikit-Learn决策树:分类问题解决方案指南
范范0825
scikit-learn决策树分类
如何用scikit-learn的决策树分类器解决分类问题1.引言在本教程中,我们将探讨如何使用scikit-learn(sklearn)库中的决策树分类器解决分类问题。决策树是一种强大的机器学习算法,能够根据输入数据的特征属性学习决策规则,并用于预测新数据的分类标签。2.理论基础与算法介绍2.1决策树算法概述决策树是一种树形结构,每个非叶节点表示一个特征属性上的决策,每个分支代表一个决策结果的可能
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那