双极限齐次性(二)、推导二阶非线性多智能体固定时间一致性协议(第二部分)

2.3、证明系统是全局渐进稳定的

证明 z ˙ = ψ \dot z = \psi z˙=ψ 是全局渐进稳定的

选择李雅普诺夫函数 V = V 1 + V 2 + V 3 V = V_1 + V_2 + V_3 V=V1+V2+V3
V 1 = l 1 1 + α 1 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 1 + α 1 + l 2 1 + α 2 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 1 + α 2 V 2 = c x ~ T L ^ x ~ V 3 = ∑ i = 1 N p i ( x ~ i + v ~ i ) 2 \begin{aligned} V_1 & = \frac{l_1}{1 + \alpha_1} \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^{1 + \alpha_1} + \frac{l_2}{1 + \alpha_2} \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^{1 + \alpha_2} \\ V_2 &= c \tilde{x}^T \hat L \tilde{x} \\ V_3 & = \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) ^ 2 \end{aligned} V1V2V3=1+α1l1i=1Nj=1Npiaijx~ix~j1+α1+1+α2l2i=1Nj=1Npiaijx~ix~j1+α2=cx~TL^x~=i=1Npi(x~i+v~i)2
对其求导
V ˙ 1 = l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 1 ( v ~ i − v ~ j ) + l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 2 ( v ~ i − v ~ j ) V ˙ 2 = 2 c x ~ T L ^ v ~ = 2 c x ~ T L ^ ( x ~ + v ~ − x ~ ) = 2 c x ~ T L ^ ( x ~ + v ~ ) − 2 c x ~ T L ^ x ≤ c ( x ~ + v ~ ) T L ^ ( x ~ + v ~ ) − c x ~ T L ^ x ~ V ˙ 3 = 2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( v ~ i + v ~ ˙ i ) = 2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( v ~ i + u i + f ( x i , v i ) − ∑ j = 1 N p j f ( x j , v j ) ) \begin{aligned} \dot V_1 &= l_1\sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j\rfloor ^{\alpha_1}(\tilde{v}_i - \tilde{v}_j) + l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor^{\alpha_2}(\tilde{v}_i - \tilde{v}_j) \\ \dot V_2 &= 2c\tilde{x}^T \hat L \tilde{v} = 2c\tilde{x}^T \hat L (\tilde{x} + \tilde{v} -\tilde{x}) = 2c\tilde{x}^T \hat L (\tilde{x} + \tilde{v}) - 2c\tilde{x}^T \hat L x \le c(\tilde{x}+\tilde{v})^T \hat L (\tilde{x} + \tilde{v}) - c\tilde{x}^T \hat L \tilde{x} \\ \dot V_3 &= 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (\tilde{v}_i + {\dot {\tilde{v}}}_i) = 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (\tilde{v}_i + u_i + f(x_i,v_i) - \sum_{j=1}^N p_j f(x_j,v_j)) \end{aligned} V˙1V˙2V˙3=l1i=1Nj=1Npiaijx~ix~jα1(v~iv~j)+l2i=1Nj=1Npiaijx~ix~jα2(v~iv~j)=2cx~TL^v~=2cx~TL^(x~+v~x~)=2cx~TL^(x~+v~)2cx~TL^xc(x~+v~)TL^(x~+v~)cx~TL^x~=2i=1Npi(x~i+v~i)(v~i+v~˙i)=2i=1Npi(x~i+v~i)(v~i+ui+f(xi,vi)j=1Npjf(xj,vj))
推导 V 3 V_3 V3 v i v_i vi 部分
2 ∑ i = 1 N p i ( x ~ i + v ~ i ) v i = 2 ∑ i = 1 N p i ( x ~ i + v i ) ( x ~ i + v i − x ~ i ) ≤ 2 p m a x ∑ i = 1 N ( x ~ i + v ~ i ) 2 + 2 p m a x ∑ i = 1 N ∣ x ~ i + v ~ i ∣ ∣ x ~ i ∣ ≤ 2 p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) + 2 p m a x ( x ~ + v ~ ) T x ≤ 2 p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) + p m a x x ~ T x ~ + p m a x ( x ~ + v ~ ) T x ~ ≤ 3 p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) + p m a x x ~ T x ~ \begin{aligned} 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) v_i &= 2 \sum_{i=1}^N p_i (\tilde{x}_i + v_i) (\tilde{x}_i + v_i - \tilde{x}_i) \\ &\le 2 p_{max} \sum_{i=1}^N (\tilde{x}_i + \tilde{v}_i)^2 + 2 p_{max} \sum_{i=1}^N |\tilde{x}_i + \tilde{v}_i||\tilde{x}_i| \\ &\le 2 p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v}) + 2p_{max} (\tilde{x} + \tilde{v})^T x\\ &\le 2 p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v})+ p_{max} \tilde{x}^T \tilde{x} + p_{max} (\tilde{x} + \tilde{v})^T \tilde{x} \\ &\le 3 p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v})+ p_{max} \tilde{x}^T \tilde{x} \end{aligned} 2i=1Npi(x~i+v~i)vi=2i=1Npi(x~i+vi)(x~i+vix~i)2pmaxi=1N(x~i+v~i)2+2pmaxi=1Nx~i+v~i∣∣x~i2pmax(x~+v~)T(x~+v~)+2pmax(x~+v~)Tx2pmax(x~+v~)T(x~+v~)+pmaxx~Tx~+pmax(x~+v~)Tx~3pmax(x~+v~)T(x~+v~)+pmaxx~Tx~
推导 V 3 V_3 V3 f ( x i , v i ) − ∑ j = 1 N p j f ( x j , v j ) f(x_i,v_i) - \sum_{j=1}^N p_j f(x_j,v_j) f(xi,vi)j=1Npjf(xj,vj) 部分,由于 ∑ i = 1 N p i ( x i + v i ) = 0 \sum_{i=1}^N p_i (x_i + v_i) = 0 i=1Npi(xi+vi)=0, 可得 ∑ i = 1 N p i ( x i + v i ) ( f ( x ˉ , v ˉ ) − ∑ j = 1 N p j f ( x j , v j ) ) = 0 \sum_{i=1}^N p_i (x_i + v_i) (f(\bar x,\bar v) - \sum_{j=1}^N p_j f(x_j,v_j)) = 0 i=1Npi(xi+vi)(f(xˉ,vˉ)j=1Npjf(xj,vj))=0 。基于假设1可得
2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( f ( x i , v i ) − ∑ j = 1 N p j f ( x j , v j ) ) = 2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( f ( x i , v i ) − f ( x ˉ , v ˉ ) ) = 2 ρ p m a x ∑ i = 1 N ∣ x ~ i − v ~ i ∣ ( ∣ x ~ i ∣ + ∣ v ~ i ∣ ) = 2 ρ p m a x ∑ i = 1 N ∣ x ~ i − v ~ i ∣ ( ∣ x ~ i ∣ + ∣ v ~ i + x ~ i − x ~ i ∣ ) = 2 ρ p m a x x ~ T x ~ + 4 ρ p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) \begin{aligned} & 2\sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (f(x_i,v_i) - \sum_{j=1}^N p_j f(x_j,v_j)) \\ & = 2\sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (f(x_i,v_i) - f(\bar x, \bar v)) \\ & = 2 \rho p_{max} \sum_{i=1}^N |\tilde{x}_i - \tilde{v}_i|(|\tilde{x}_i| + |\tilde{v}_i|) \\ &= 2 \rho p_{max} \sum_{i=1}^N |\tilde{x}_i - \tilde{v}_i|(|\tilde{x}_i| + |\tilde{v}_i + \tilde{x}_i - \tilde{x}_i|) \\ &= 2\rho p_{max} \tilde{x}^T \tilde{x} + 4 \rho p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v}) \end{aligned} 2i=1Npi(x~i+v~i)(f(xi,vi)j=1Npjf(xj,vj))=2i=1Npi(x~i+v~i)(f(xi,vi)f(xˉ,vˉ))=2ρpmaxi=1Nx~iv~i(x~i+v~i)=2ρpmaxi=1Nx~iv~i(x~i+v~i+x~ix~i)=2ρpmaxx~Tx~+4ρpmax(x~+v~)T(x~+v~)
推导 V 3 V_3 V3 u 3 i u_{3i} u3i 部分
2 ∑ i = 1 N p i ( x ~ i + v ~ i ) u 3 i = − 2 k ∑ i = 1 N ∑ j = 1 N p i a i j ( x ~ i + v ~ i ) ( x ~ i + v ~ i − x ~ j − v ~ j ) = − k ∑ i = 1 N ∑ j = 1 N p i a i j ( x ~ i + v ~ i − x ~ j − v ~ j ) 2 = − 2 k ( x ~ + v ~ ) T L ^ ( x ~ + v ~ ) \begin{aligned} 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) u_{3i} &= -2 k \sum_{i=1}^N\sum_{j=1}^N p_i a_{ij} (\tilde{x}_i + \tilde{v}_i) (\tilde{x}_i + \tilde{v}_i - \tilde{x}_j - \tilde{v}_j) \\ &= - k \sum_{i=1}^N\sum_{j=1}^N p_i a_{ij} (\tilde{x}_i + \tilde{v}_i - \tilde{x}_j - \tilde{v}_j)^2 \\ &= -2 k (\tilde{x} + \tilde{v})^T \hat L (\tilde{x} + \tilde{v}) \end{aligned} 2i=1Npi(x~i+v~i)u3i=2ki=1Nj=1Npiaij(x~i+v~i)(x~i+v~ix~jv~j)=ki=1Nj=1Npiaij(x~i+v~ix~jv~j)2=2k(x~+v~)TL^(x~+v~)
推导 V 3 V_3 V3 u 1 i + u 2 i u_{1i} + u_{2i} u1i+u2i 部分
2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( u 1 i + u 2 i ) = − 2 k ∑ i = 1 N p i a i j ( x ~ i + v ~ i ) ( l 1 ⌈ x i − x j ⌋ α 1 + l 1 ⌈ v i − v j ⌋ α 1 ′ + l 2 ⌈ x i − x j ⌋ α 2 + l 2 ⌈ v i − v j ⌋ α 2 ′ ) = − 2 k ∑ i = 1 N p i a i j x ~ i ( l 1 ⌈ x i − x j ⌋ α 1 + l 1 ⌈ v i − v j ⌋ α 1 ′ + l 2 ⌈ x i − x j ⌋ α 2 + l 2 ⌈ v i − v j ⌋ α 2 ′ )      − 2 k ∑ i = 1 N p i a i j v ~ i ( l 1 ⌈ x i − x j ⌋ α 1 + l 1 ⌈ v i − v j ⌋ α 1 ′ + l 2 ⌈ x i − x j ⌋ α 2 + l 2 ⌈ v i − v j ⌋ α 2 ′ ) = − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 1 + α 1 − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 1 + α 2      − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ v ~ i − v ~ j ∣ 1 + α 1 ′ − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ v ~ i − v ~ j ∣ 1 + α 2 ′      − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 1 ( v ~ i − v ~ j ) − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 2 ( v ~ i − v ~ j )      − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ v ~ i − v ~ j ⌋ α 1 ′ ( x ~ i − x ~ j ) − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ v ~ i − v ~ j ⌋ α 2 ′ ( x ~ i − x ~ j ) \begin{aligned} & 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (u_{1i} + u_{2i}) \\ & = -2 k \sum_{i=1}^N p_i a_{ij} (\tilde{x}_i + \tilde{v}_i) (l_1 \lceil x_i - x_j \rfloor^{\alpha_1} + l_1 \lceil v_i - v_j \rfloor^{\alpha_1'} + l_2 \lceil x_i - x_j \rfloor^{\alpha_2} + l_2 \lceil v_i - v_j \rfloor^{\alpha_2'}) \\ & = -2 k \sum_{i=1}^N p_i a_{ij} \tilde{x}_i (l_1 \lceil x_i - x_j \rfloor^{\alpha_1} + l_1 \lceil v_i - v_j \rfloor^{\alpha_1'} + l_2 \lceil x_i - x_j \rfloor^{\alpha_2} + l_2 \lceil v_i - v_j \rfloor^{\alpha_2'}) \\ & \ \ \ \ - 2 k \sum_{i=1}^N p_i a_{ij} \tilde{v}_i (l_1 \lceil x_i - x_j \rfloor^{\alpha_1} + l_1 \lceil v_i - v_j \rfloor^{\alpha_1'} + l_2 \lceil x_i - x_j \rfloor^{\alpha_2} + l_2 \lceil v_i - v_j \rfloor^{\alpha_2'}) \\ & = -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^{1+\alpha_1} -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^{1+\alpha_2} \\ & \ \ \ \ -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{v}_i - \tilde{v}_j|^{1+\alpha_1'} -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} |\tilde{v}_i - \tilde{v}_j|^{1+\alpha_2'} \\ & \ \ \ \ -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_1}(\tilde{v}_i - \tilde{v}_j ) -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_2}(\tilde{v}_i - \tilde{v}_j ) \\ & \ \ \ \ -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{v}_i - \tilde{v}_j \rfloor ^ {\alpha_1'}(\tilde{x}_i - \tilde{x}_j ) -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{v}_i - \tilde{v}_j \rfloor ^ {\alpha_2'}(\tilde{x}_i - \tilde{x}_j ) \\ \end{aligned} 2i=1Npi(x~i+v~i)(u1i+u2i)=2ki=1Npiaij(x~i+v~i)(l1xixjα1+l1vivjα1+l2xixjα2+l2vivjα2)=2ki=1Npiaijx~i(l1xixjα1+l1vivjα1+l2xixjα2+l2vivjα2)    2ki=1Npiaijv~i(l1xixjα1+l1vivjα1+l2xixjα2+l2vivjα2)=l1i=1Nj=1Npiaijx~ix~j1+α1l2i=1Nj=1Npiaijx~ix~j1+α2    l1i=1Nj=1Npiaijv~iv~j1+α1l2i=1Nj=1Npiaijv~iv~j1+α2    l1i=1Nj=1Npiaijx~ix~jα1(v~iv~j)l2i=1Nj=1Npiaijx~ix~jα2(v~iv~j)    l1i=1Nj=1Npiaijv~iv~jα1(x~ix~j)l2i=1Nj=1Npiaijv~iv~jα2(x~ix~j)
由引理4(也是一个缩放不等式)以及参数关系 1 + α 1 < 1 + α 1 ′ < 2 < 1 + α 2 ′ < 1 + α 2 1 + \alpha_1 < 1 + \alpha_1' < 2 < 1+ \alpha_2' < 1 + \alpha_2 1+α1<1+α1<2<1+α2<1+α2 可以得到
     − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ v ~ i − v ~ j ⌋ α 1 ′ ( x ~ i − x ~ j ) ≤ l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ∣ v ~ i − v ~ j ∣ α 1 ′ ∣ x ~ i − x ~ j ∣ ≤ l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ( α 1 ′ 1 + α 1 ′ ∣ v ~ i − v ~ j ∣ 1 + α 1 ′ + 1 1 + α 1 ′ ∣ x ~ i + x ~ j ∣ 1 + α 1 ′ ) ≤ l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ( α 1 ′ 1 + α 1 ′ ∣ v ~ i − v ~ j ∣ 1 + α 1 ′ + 1 1 + α 1 ′ ∣ x ~ i + x ~ j ∣ 1 + α 1 + 1 1 + α 1 ′ ∣ x ~ i + x ~ j ∣ 2 ) \begin{aligned} & \ \ \ \ -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{v}_i - \tilde{v}_j \rfloor ^ {\alpha_1'}(\tilde{x}_i - \tilde{x}_j ) \\ & \le l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} | \tilde{v}_i - \tilde{v}_j | ^ {\alpha_1'}|\tilde{x}_i - \tilde{x}_j | \\ & \le l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \left(\frac{\alpha_1'}{1+\alpha_1'}|\tilde{v}_i - \tilde{v}_j | ^ {1 + \alpha_1'}+ \frac{1}{1+\alpha_1'} |\tilde{x}_i + \tilde{x}_j | ^ {1 + \alpha_1'} \right) \\ & \le l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \left(\frac{\alpha_1'}{1+\alpha_1'}|\tilde{v}_i - \tilde{v}_j | ^ {1 + \alpha_1'}+ \frac{1}{1+\alpha_1'} |\tilde{x}_i + \tilde{x}_j | ^ {1 + \alpha_1} + \frac{1}{1+\alpha_1'} |\tilde{x}_i + \tilde{x}_j | ^ {2} \right) \\ \end{aligned}     l1i=1Nj=1Npiaijv~iv~jα1(x~ix~j)l1i=1Nj=1Npiaijv~iv~jα1x~ix~jl1i=1Nj=1Npiaij(1+α1α1v~iv~j1+α1+1+α11x~i+x~j1+α1)l1i=1Nj=1Npiaij(1+α1α1v~iv~j1+α1+1+α11x~i+x~j1+α1+1+α11x~i+x~j2)
和上面一样,同样可得
     − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ v ~ i − v ~ j ⌋ α 2 ′ ( x ~ i − x ~ j ) ≤ l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ( α 2 ′ 1 + α 2 ′ ∣ v ~ i − v ~ j ∣ 1 + α 2 ′ + 1 1 + α 2 ′ ∣ x ~ i + x ~ j ∣ 1 + α 2 + 1 1 + α 2 ′ ∣ x ~ i + x ~ j ∣ 2 ) \begin{aligned} & \ \ \ \ -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{v}_i - \tilde{v}_j \rfloor ^ {\alpha_2'}(\tilde{x}_i - \tilde{x}_j ) \\ & \le l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \left(\frac{\alpha_2'}{1+\alpha_2'}|\tilde{v}_i - \tilde{v}_j | ^ {1 + \alpha_2'}+ \frac{1}{1+\alpha_2'} |\tilde{x}_i + \tilde{x}_j | ^ {1 + \alpha_2} + \frac{1}{1+\alpha_2'} |\tilde{x}_i + \tilde{x}_j | ^ {2} \right) \\ \end{aligned}     l1i=1Nj=1Npiaijv~iv~jα2(x~ix~j)l1i=1Nj=1Npiaij(1+α2α2v~iv~j1+α2+1+α21x~i+x~j1+α2+1+α21x~i+x~j2)
带入 V 3 V_3 V3 u 1 i + u 2 i u_{1i} + u_{2i} u1i+u2i 部分
     2 ∑ i = 1 N p i ( x ~ i + v ~ i ) ( u 1 i + u 2 i ) ≤ − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 1 ( v ~ i − v ~ j ) − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 2 ( v ~ i − v ~ j )      + l 1 1 + α 1 ′ ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 2 + l 2 1 + α 2 ′ ∑ i = 1 N ∑ j = 1 N p i a i j ∣ x ~ i − x ~ j ∣ 2 ≤ − l 1 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 1 ( v ~ i − v ~ j ) − l 2 ∑ i = 1 N ∑ j = 1 N p i a i j ⌈ x ~ i − x ~ j ⌋ α 2 ( v ~ i − v ~ j )      + 2 l 1 1 + α 1 ′ x ~ T L ^ x ~ + 2 l 2 1 + α 2 ′ x ~ T L ^ x ~ \begin{aligned} & \ \ \ \ 2 \sum_{i=1}^N p_i (\tilde{x}_i + \tilde{v}_i) (u_{1i} + u_{2i}) \\ & \le -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_1}(\tilde{v}_i - \tilde{v}_j ) -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_2}(\tilde{v}_i - \tilde{v}_j ) \\ & \ \ \ \ + \frac{l_1}{1+\alpha_1'} \sum_{i=1}^N\sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^2 + \frac{l_2}{1+\alpha_2'} \sum_{i=1}^N\sum_{j=1}^N p_i a_{ij} |\tilde{x}_i - \tilde{x}_j|^2 \\ & \le -l_1 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_1}(\tilde{v}_i - \tilde{v}_j ) -l_2 \sum_{i=1}^N \sum_{j=1}^N p_i a_{ij} \lceil \tilde{x}_i - \tilde{x}_j \rfloor ^ {\alpha_2}(\tilde{v}_i - \tilde{v}_j ) \\ & \ \ \ \ + \frac{2l_1}{1+\alpha_1'} \tilde{x} ^ T \hat L \tilde{x} + \frac{2l_2}{1+\alpha_2'} \tilde{x} ^ T \hat L \tilde{x} \end{aligned}     2i=1Npi(x~i+v~i)(u1i+u2i)l1i=1Nj=1Npiaijx~ix~jα1(v~iv~j)l2i=1Nj=1Npiaijx~ix~jα2(v~iv~j)    +1+α1l1i=1Nj=1Npiaijx~ix~j2+1+α2l2i=1Nj=1Npiaijx~ix~j2l1i=1Nj=1Npiaijx~ix~jα1(v~iv~j)l2i=1Nj=1Npiaijx~ix~jα2(v~iv~j)    +1+α12l1x~TL^x~+1+α22l2x~TL^x~
结合 V ˙ 1 \dot V_1 V˙1 V ˙ 2 \dot V_2 V˙2 V ˙ 3 \dot V_3 V˙3 可得
V ˙ ≤ ( − c + 2 l 1 1 + α 1 ′ + 2 l 2 1 + α 2 ′ ) x ~ T L ^ x ~ + ( 2 ρ + 1 ) p m a x x ~ T x ~      + ( − 2 k + c ) ( x ~ + v ~ ) T L ^ ( x ~ + v ~ ) + ( 3 + 4 ρ ) p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) ≤ − ( ( 2 ρ + 1 ) p m a x + l 3 ) / K x ~ T L ^ x ~ + ( 2 ρ + 1 ) p m a x x ~ T x ~      − ( ( 4 ρ + 3 ) p m a x + l 4 ) / K ( x ~ + v ~ ) T L ^ ( x ~ + v ~ ) + ( 3 + 4 ρ ) p m a x ( x ~ + v ~ ) T ( x ~ + v ~ ) ≤ − l 3 x ~ T x ~ − l 4 ( x ~ + v ~ ) T ( x ~ + v ~ ) ≤ 0 \begin{aligned} \dot V & \le (-c + \frac{2l_1}{1+\alpha_1'}+\frac{2l_2}{1+\alpha_2'})\tilde{x} ^ T \hat L \tilde{x} + (2\rho + 1)p_{max} \tilde{x} ^ T \tilde{x} \\ & \ \ \ \ + (-2k + c)(\tilde{x} + \tilde{v}) ^ T \hat L (\tilde{x} + \tilde{v}) + (3 + 4\rho)p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v}) \\ & \le -((2\rho + 1)p_{max} + l_3)/K \tilde{x} ^ T \hat L \tilde{x} + (2\rho + 1)p_{max} \tilde{x} ^ T \tilde{x} \\ & \ \ \ \ -((4\rho + 3)p_{max} + l_4)/K (\tilde{x} + \tilde{v})^ T \hat L (\tilde{x} + \tilde{v}) + (3 + 4\rho)p_{max} (\tilde{x} + \tilde{v})^T(\tilde{x} + \tilde{v}) \\ & \le -l_3 \tilde{x}^T \tilde{x} - l_4 (\tilde{x} + \tilde{v})^T (\tilde{x} + \tilde{v}) \\ & \le 0 \end{aligned} V˙(c+1+α12l1+1+α22l2)x~TL^x~+(2ρ+1)pmaxx~Tx~    +(2k+c)(x~+v~)TL^(x~+v~)+(3+4ρ)pmax(x~+v~)T(x~+v~)((2ρ+1)pmax+l3)/Kx~TL^x~+(2ρ+1)pmaxx~Tx~    ((4ρ+3)pmax+l4)/K(x~+v~)TL^(x~+v~)+(3+4ρ)pmax(x~+v~)T(x~+v~)l3x~Tx~l4(x~+v~)T(x~+v~)0
这里用到了引理5,证明到最后一步就用到了参数定义时的不等式,我们发现这个 证明也是利用了巧妙的参数。到这里证明了 z = ψ z = \psi z=ψ 是全局渐进稳定的,也就证明了系统是全局固定时间稳定的。

只能说,精彩!!!

三、仿真

仿真不再做了,从这个控制律的形式也能看出来,效果一定很好,这里难的是证明他的固定时间收敛性,更多的信息可以参考原文

四、参考文献

[1] H. Hong, W. Yu, J. Fu, and X. Yu, “A Novel Class of Distributed Fixed-Time Consensus Protocols for Second-Order Nonlinear and Disturbed Multi-Agent Systems,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 4, pp. 760–772, Oct. 2019, doi: 10.1109/TNSE.2018.2873060.

你可能感兴趣的:(控制理论,机器学习,算法,人工智能)