基于YOLOv8的自定义医学图像分割

YOLOv8是一种令人惊叹的分割模型;它易于训练、测试和部署。在本教程中,我们将学习如何在自定义数据集上使用YOLOv8。但在此之前,我想告诉你为什么在存在其他优秀的分割模型时应该使用YOLOv8呢?

我正在从事与医学图像分割相关的项目,当我的合作者突然告诉我,我们只有来自175名患者的600张图像和标注。在医学成像领域,这是一个常见的问题,因为临床医生是最忙碌的人,他们有许多职责。然而,他向我保证,一旦模型训练好(并进行微调),我们将获得来自其他300多名患者的图像和标注,作为额外的测试集以评估我们的模型。

我开始将这50名患者分为训练、测试和验证数据集,使用80:10:10的比例。对于模型,我首先尝试了UNet及其变体(ResUNet、Attention UNet、Res-Attention UNet)。这些模型在训练、测试和验证数据集上表现出色,但在额外的测试集上表现糟糕。然后我想,“让我们试试YOLOv8;如果有效,那将是很好的,如果不行,那将是一次有趣的学习经历。”几个小时后,它奏效了,令我惊讶的是,在额外的测试集上远远超出了我的预期。我不能透露具体数值,因为论文仍在审查中,但我愿意分享如何将其调整为自定义数据集,以便你可以节省大量工作时间。让我们开始制定攻略。

攻略

以下是我们将学习的主题:

1. YOLOv8简介

2. 安装库

3. 数据集准备

4. 训练准备

5. 训练模型

6. 结果

YOLOv8简介

YOLOv8是YOLO系列的最新版本,用于实时目标检测,由Ultralytics开发。它通过引入空间注意力和特征融合等修改来提高准确性和速度。该架构将修改过的CSPDarknet53骨干网络与用于处理的先进头部相结合。这些先进之处使YOLOv8成为各种计算机视觉任务的最新选择。

安装库

以下是安装库的选项。

# Install the ultralytics package using conda
conda install -c conda-forge ultralytics


or 


# Install the ultralytics package from PyPI
pip install ultralytics

数据集准备

数据集需要进行两个步骤的处理:

步骤1:请按照以下结构组织您的数据集(图像和掩膜):理想情况下,训练、测试和验证(val)的比例为80:10:10。数据集文件夹的安排如下:

dataset
|
|---train
|   |-- images
|   |-- labels 
|   
|---Val
|   |-- images 
|   |-- labels
|
|---test
|   |-- images
|   |-- labels

步骤2:第二步是将 .png(或任何类型)掩膜(标签)转换为所有3个标签文件夹中的 .txt 文件。以下是将标签(.png、.jpg)转换为 .txt 文件的Python代码。(您也可以在此操作)

基于YOLOv8的自定义医学图像分割_第1张图片

将每个标签图像转换为 .txt 文件

import numpy as np
from PIL import Image


import numpy as np
from PIL import Image
from pathlib import Path


def create_label(image_path, label_path):
    # Load the image from the given path and convert it to a NumPy array
    mask = np.asarray(Image.open(image_path))


    # Find the coordinates of non-zero (i.e., not black) pixels in the mask's first channel (assumed to be red)
    rows, cols = np.nonzero(mask[:, :, 0])


    # If no non-zero pixels are found in the mask, return early as there's nothing to label
    if len(rows) == 0:
        return  # Optionally, handle the case of no non-zero pixels as needed


    # Calculate the normalized coordinates by dividing by the respective dimensions of the image
    # This is done to ensure that the coordinates are relative (between 0 and 1) rather than absolute
    normalized_coords = [(col / mask.shape[1], row / mask.shape[0]) for row, col in zip(rows, cols)]


    # Construct a string representing the label data
    # The format starts with '0' (which might represent a class id or similar) followed by pairs of normalized coordinates
    label_line = '0 ' + ' '.join([f'{cord[0]} {cord[1]}' for cord in normalized_coords])


    # Ensure that the directory for the label_path exists, create it if not
    Path(label_path).parent.mkdir(parents=True, exist_ok=True)


    # Open the label file in write mode and write the label_line to it
    with open(label_path, 'w') as f:
        f.write(label_line)






import os


for x in ['train', 'val', 'test']:
    images_dir_path = Path(f'datasets/{x}/labels')
    for img_path in images_dir_path.iterdir():
        if img_path.is_file() and img_path.suffix.lower() in ['.jpg', '.jpeg', '.png', '.bmp']:
            label_path = img_path.parent.parent / 'labels_' / f'{img_path.stem}.txt'
            label_line = create_label(img_path, label_path)
        else:
            print(f"Skipping non-image file: {img_path}")

请注意:在运行上述代码后,请不要忘记从标签文件夹中删除标签(掩膜)图像。

训练准备

为训练创建 'data.yaml' 文件。只需在Python中运行下面的代码,它将为YOLOv8创建 'data.yaml' 文件。

yaml_content = f'''
train: train/images
val: val/images
test: test/images


names: ['object']
# Hyperparameters ------------------------------------------------------------------------------------------------------
# lr0: 0.01  # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
# lrf: 0.01  # final learning rate (lr0 * lrf)
# momentum: 0.937  # SGD momentum/Adam beta1
# weight_decay: 0.0005  # optimizer weight decay 5e-4
# warmup_epochs: 3.0  # warmup epochs (fractions ok)
# warmup_momentum: 0.8  # warmup initial momentum
# warmup_bias_lr: 0.1  # warmup initial bias lr
# box: 7.5  # box loss gain
# cls: 0.5  # cls loss gain (scale with pixels)
# dfl: 1.5  # dfl loss gain
# pose: 12.0  # pose loss gain
# kobj: 1.0  # keypoint obj loss gain
# label_smoothing: 0.0  # label smoothing (fraction)
# nbs: 64  # nominal batch size
# hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
# hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
# hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.5  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.2  # image scale (+/- gain)
shear: 0.2  # image shear (+/- deg) from -0.5 to 0.5
perspective: 0.1  # image perspective (+/- fraction), range 0-0.001
flipud: 0.7  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 0.8  # image mosaic (probability)
mixup: 0.1  # image mixup (probability)
# copy_paste: 0.0  # segment copy-paste (probability)
    '''
    
with Path('data.yaml').open('w') as f:
    f.write(yaml_content)

训练模型

一旦数据准备好,其余的非常简单,只需运行以下代码。

import matplotlib.pyplot as plt
from ultralytics import YOLO


model = YOLO("yolov8n-seg.pt")


results = model.train(
        batch=8,
        device="cpu",
        data="data.yaml",
        epochs=100,
        imgsz=255)

基于YOLOv8的自定义医学图像分割_第2张图片

恭喜,你成功了。现在你会看到一个 'runs' 文件夹,你可以在其中找到所有的训练矩阵和图表。

结果

好,让我们在测试数据上检查结果:

model = YOLO("runs/segment/train13/weights/best.pt") # load the model


file = glob.glob('datasets/test/images/*') # let's get the images

现在让我们在图像上运行代码。

# lets run the model over every image
for i in range(len(file)):
    result = model(file[i], save=True, save_txt=True)

基于YOLOv8的自定义医学图像分割_第3张图片

将每个 Pred.txt 文件转换为 mask.png

import numpy as np
import cv2


def convert_label_to_image(label_path, image_path):
    # Read the .txt label file
    with open(label_path, 'r') as f:
        label_line = f.readline()


    # Parse the label line to extract the normalized coordinates
    coords = label_line.strip().split()[1:]  # Remove the class label (assuming it's always 0)


    # Convert normalized coordinates to pixel coordinates
    width, height = 256, 256  # Set the dimensions of the output image
    coordinates = [(float(coords[i]) * width, float(coords[i+1]) * height) for i in range(0, len(coords), 2)]
    coordinates = np.array(coordinates, dtype=np.int32)


    # Create a blank image
    image = np.zeros((height, width, 3), dtype=np.uint8)


    # Draw the polygon using the coordinates
    cv2.fillPoly(image, [coordinates], (255, 255, 255))  # Fill the polygon with white color
    print(image.shape)
    # Save the image
    cv2.imwrite(image_path, image)
    print("Image saved successfully.")


# Example usage
label_path = 'runs/segment/predict4/val_labels/img_105.txt'
image_path = 'runs/segment/predict4/val_labels/img_105.jpg'
convert_label_to_image(label_path, image_path)






file = glob.glob('runs/segment/predict11/labels/*.txt')
for i in range(len(file)):
    label_path = file[i]
    image_path = file[i][:-3]+'jpg'
    convert_label_to_image(label_path, image_path)

·  END  ·

HAPPY LIFE

基于YOLOv8的自定义医学图像分割_第4张图片

本文仅供学习交流使用,如有侵权请联系作者删除

你可能感兴趣的:(YOLO)