kibana Dev Tools语句查询简单使用入门

使用kibana7.0.0的控制台Dev Tools操作ES数据的基本语法入门示例

因为使用的是本地启动的ES库,所以需要先启动ES,然后启动kibana,直接从官网上下载安装启动即可,说明一点就是需先启动ES,在启动kibana,该部分效果以及添加官方示例数据已在之前一篇文章中写过,此处不再重复。

直接点击Dev Tools,来看基本操作

1,输入:GET /

在右侧将看到和启动完ES后在浏览器输入localhost:9200相同的内容

kibana Dev Tools语句查询简单使用入门_第1张图片

2,创建索引

输入:

kibana Dev Tools语句查询简单使用入门_第2张图片

说明:因为7版本之后,ES不再支持一个索引(index)可以创建多个类型(type),所以cmcc/后边不再需要写入类型名称,而是统一使用_create代替即可,同样的,查询操作使用_doc代替即可,右侧看到如下图所示类似形式表示创建成功

kibana Dev Tools语句查询简单使用入门_第3张图片

3,查看刚才创建的索引

输入:GET cmcc/_doc/1

右侧将显示刚才创建的内容,其中_index是刚才创建的索引名称;_type是类型,7版本统一为_doc;_id为创建时的ID,如果创建索引的时候不设置ID,那么ES将默认分配一个ID,不过样式会比较长,不好记忆;_version为版本号,如果我们之后对该数据进行了修改,那么他会随之变化;_source里边就是我们刚才加进去的数据内容

kibana Dev Tools语句查询简单使用入门_第4张图片

4,删除索引

输入:DELETE cmcc

只需要在DELETE后边加上索引名称即可

5,修改数据

输入:

kibana Dev Tools语句查询简单使用入门_第5张图片

这里我们修改了"name"值,把"province"和"conutry"值改为中文,并添加了一个新属性"xingbie",执行之后我们再次执行获取数据内容命令GET cmcc/_doc/1,如下,可以看到数据已经被修改,版本号变成了2

kibana Dev Tools语句查询简单使用入门_第6张图片

6,bulk方法批量插入数据

输入:

kibana Dev Tools语句查询简单使用入门_第7张图片

使用POST方法,然后每一条数据的格式是一致的,首先第一行输入 {"index":{"_index":"cmcc"}} ,也就是索引名称,第二行输入要插入的完整数据,这里特别提醒下,插入的这条数据不能使用刚才创建数据时的那种多行形式,只能使用没有回车的一条数据,否则会报错如下:

{
  "error": {
    "root_cause": [
      {
        "type": "json_e_o_f_exception",
        "reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 3]"
      }
    ],
    "type": "json_e_o_f_exception",
    "reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 3]"
  },
  "status": 500
}

执行完毕后,我们再次获取数据看一下,输入:GET cmcc/_search

结果如下:(不截长图了,就直接贴结果吧>_<)

{
  "took" : 374,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "cmcc",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "dunkking",
          "age" : 27,
          "location" : "SG",
          "province" : "河北",
          "country" : "中国",
          "xingbie" : "mela"
        }
      },
      {
        "_index" : "cmcc",
        "_type" : "_doc",
        "_id" : "9vD-3moBmjOHTfOJtVLL",
        "_score" : 1.0,
        "_source" : {
          "name" : "points",
          "age" : 23,
          "location" : "PG",
          "province" : "江苏",
          "country" : "中国",
          "xingbie" : "mela"
        }
      },
      {
        "_index" : "cmcc",
        "_type" : "_doc",
        "_id" : "9_D-3moBmjOHTfOJtVLL",
        "_score" : 1.0,
        "_source" : {
          "name" : "rebound",
          "age" : 24,
          "location" : "SF",
          "province" : "广州",
          "country" : "中国",
          "xingbie" : "mela"
        }
      },
      {
        "_index" : "cmcc",
        "_type" : "_doc",
        "_id" : "-PD-3moBmjOHTfOJtVLL",
        "_score" : 1.0,
        "_source" : {
          "name" : "center",
          "age" : 23,
          "location" : "C",
          "province" : "北京",
          "country" : "中国",
          "xingbie" : "femela"
        }
      },
      {
        "_index" : "cmcc",
        "_type" : "_doc",
        "_id" : "-fD-3moBmjOHTfOJtVLL",
        "_score" : 1.0,
        "_source" : {
          "name" : "assist",
          "age" : 21,
          "location" : "PF",
          "province" : "广州",
          "country" : "中国",
          "xingbie" : "famela"
        }
      }
    ]
  }
}

7,按照条件查询

输入:

kibana Dev Tools语句查询简单使用入门_第8张图片

也就是查询数据中属性"province"为"广州"的数据,结果如下:

{

  "took" : 10,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 2,

      "relation" : "eq"

    },

    "max_score" : 1.7509375,

    "hits" : [

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9_D-3moBmjOHTfOJtVLL",

        "_score" : 1.7509375,

        "_source" : {

          "name" : "rebound",

          "age" : 24,

          "location" : "SF",

          "province" : "广州",

          "country" : "中国",

          "xingbie" : "mela"

        }

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-fD-3moBmjOHTfOJtVLL",

        "_score" : 1.7509375,

        "_source" : {

          "name" : "assist",

          "age" : 21,

          "location" : "PF",

          "province" : "广州",

          "country" : "中国",

          "xingbie" : "famela"

        }

      }

    ]

  }

}

8,当同一个属性满足逻辑或时的查询

输入:

kibana Dev Tools语句查询简单使用入门_第9张图片

这里是查询属性"age"等于21或者23的数据,如果看着不舒服,我们可以点击运行按钮右侧的扳手,选择Auto indent,输入效果就会直观一些,

kibana Dev Tools语句查询简单使用入门_第10张图片

其中,116行固定输入"query",117行固定输入"bool",118行输入为"should",表示是逻辑或的关系,120行为"match",121行为所要查询的属性名与属性值

执行结果如下

{

  "took" : 0,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 3,

      "relation" : "eq"

    },

    "max_score" : 1.0,

    "hits" : [

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9vD-3moBmjOHTfOJtVLL",

        "_score" : 1.0,

        "_source" : {

          "name" : "points",

          "age" : 23,

          "location" : "PG",

          "province" : "江苏",

          "country" : "中国",

          "xingbie" : "mela"

        }

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-PD-3moBmjOHTfOJtVLL",

        "_score" : 1.0,

        "_source" : {

          "name" : "center",

          "age" : 23,

          "location" : "C",

          "province" : "北京",

          "country" : "中国",

          "xingbie" : "femela"

        }

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-fD-3moBmjOHTfOJtVLL",

        "_score" : 1.0,

        "_source" : {

          "name" : "assist",

          "age" : 21,

          "location" : "PF",

          "province" : "广州",

          "country" : "中国",

          "xingbie" : "famela"

        }

      }

    ]

  }

}

9,多条件查询

输入:

kibana Dev Tools语句查询简单使用入门_第11张图片

这里是查询属性"age"等于23,并且属性"country"为“中国”的数据,这里和上一条查询的关键区别就在于第98行由"should"改为"must",执行结果如下:

{

  "took" : 1,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 2,

      "relation" : "eq"

    },

    "max_score" : 1.1740228,

    "hits" : [

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9vD-3moBmjOHTfOJtVLL",

        "_score" : 1.1740228,

        "_source" : {

          "name" : "points",

          "age" : 23,

          "location" : "PG",

          "province" : "江苏",

          "country" : "中国",

          "xingbie" : "mela"

        }

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-PD-3moBmjOHTfOJtVLL",

        "_score" : 1.1740228,

        "_source" : {

          "name" : "center",

          "age" : 23,

          "location" : "C",

          "province" : "北京",

          "country" : "中国",

          "xingbie" : "femela"

        }

      }

    ]

  }

}

10,范围查询并进行排序

输入:

kibana Dev Tools语句查询简单使用入门_第12张图片

这里,151行使用"range",152行输入属性名,153行"gte"和154行"lte"表示查询属性"age"在20-25范围的数据,然后158行表示排序,160行表示排序的属性是"age",161“order”表示排序为倒序"desc",执行结果如下:

{

  "took" : 0,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 4,

      "relation" : "eq"

    },

    "max_score" : null,

    "hits" : [

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9_D-3moBmjOHTfOJtVLL",

        "_score" : null,

        "_source" : {

          "name" : "rebound",

          "age" : 24,

          "location" : "SF",

          "province" : "广州",

          "country" : "中国",

          "xingbie" : "mela"

        },

        "sort" : [

          24

        ]

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9vD-3moBmjOHTfOJtVLL",

        "_score" : null,

        "_source" : {

          "name" : "points",

          "age" : 23,

          "location" : "PG",

          "province" : "江苏",

          "country" : "中国",

          "xingbie" : "mela"

        },

        "sort" : [

          23

        ]

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-PD-3moBmjOHTfOJtVLL",

        "_score" : null,

        "_source" : {

          "name" : "center",

          "age" : 23,

          "location" : "C",

          "province" : "北京",

          "country" : "中国",

          "xingbie" : "femela"

        },

        "sort" : [

          23

        ]

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "-fD-3moBmjOHTfOJtVLL",

        "_score" : null,

        "_source" : {

          "name" : "assist",

          "age" : 21,

          "location" : "PF",

          "province" : "广州",

          "country" : "中国",

          "xingbie" : "famela"

        },

        "sort" : [

          21

        ]

      }

    ]

  }

}

11,聚合查询

输入:

kibana Dev Tools语句查询简单使用入门_第13张图片

使用聚合查询,格式是:170行使用"aggs",171行为所要查询的属性名,这里查询"age",173行"field"后边输入属性名,174行为范围,分别在"from"和"to"后边输入要分段的范围,这条请求实现的是统计属性"age"按照20-23,23-25,25-30划分的数据条数分别为多少,如果想要查看满足条件的数据,则将169行"size"值置为非零数,貌似应大于查询条数,具体还没查,这里是不显示满足条件的具体数据,直接置零即可,执行结果如下:

{

  "took" : 9,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 5,

      "relation" : "eq"

    },

    "max_score" : null,

    "hits" : [ ]

  },

  "aggregations" : {

    "age" : {

      "buckets" : [

        {

          "key" : "20.0-23.0",

          "from" : 20.0,

          "to" : 23.0,

          "doc_count" : 1

        },

        {

          "key" : "23.0-25.0",

          "from" : 23.0,

          "to" : 25.0,

          "doc_count" : 3

        },

        {

          "key" : "25.0-30.0",

          "from" : 25.0,

          "to" : 30.0,

          "doc_count" : 1

        }

      ]

    }

  }

}

聚合查询的另外一个示例

输入:

kibana Dev Tools语句查询简单使用入门_第14张图片

这条请求是查询属性"province"的统计结果,这里是统计5条数据,并显示其中2条,并在197行"field"后输入属性名,并在其后添加  .keyword,查询结果如下

{

  "took" : 0,

  "timed_out" : false,

  "_shards" : {

    "total" : 1,

    "successful" : 1,

    "skipped" : 0,

    "failed" : 0

  },

  "hits" : {

    "total" : {

      "value" : 5,

      "relation" : "eq"

    },

    "max_score" : 1.0,

    "hits" : [

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "1",

        "_score" : 1.0,

        "_source" : {

          "name" : "dunkking",

          "age" : 27,

          "location" : "SG",

          "province" : "河北",

          "country" : "中国",

          "xingbie" : "mela"

        }

      },

      {

        "_index" : "cmcc",

        "_type" : "_doc",

        "_id" : "9vD-3moBmjOHTfOJtVLL",

        "_score" : 1.0,

        "_source" : {

          "name" : "points",

          "age" : 23,

          "location" : "PG",

          "province" : "江苏",

          "country" : "中国",

          "xingbie" : "mela"

        }

      }

    ]

  },

  "aggregations" : {

    "province" : {

      "doc_count_error_upper_bound" : 0,

      "sum_other_doc_count" : 0,

      "buckets" : [

        {

          "key" : "广州",

          "doc_count" : 2

        },

        {

          "key" : "北京",

          "doc_count" : 1

        },

        {

          "key" : "江苏",

          "doc_count" : 1

        },

        {

          "key" : "河北",

          "doc_count" : 1

        }

      ]

    }

  }

}

暂时写这么多,刚开始学,很多不熟悉的,后续有时间慢慢补充

你可能感兴趣的:(restful,ES,kibana,数据库)