- ThinkSound V2版 - 一键给无声视频配音,为AI视频生成匹配音效 支持50系显卡 一键整合包下载
昨日之日2006
ai语音音视频人工智能
ThinkSound是阿里通义实验室开源的首个音频生成模型,它能够让AI像专业“音效师”一样,根据视频内容生成高度逼真、与视觉内容完美契合的音频。ThinkSound可直接应用于影视后期制作,为AI生成的视频自动匹配精准的环境噪音与爆炸声效;服务于游戏开发领域,实时生成雨势变化等动态场景的自适应音效;同时可以无障碍视频生产,为视障用户同步生成画面描述与环境音效。今天分享的ThinkSoundV2版
- cvc降噪和主动降噪_音频知识:CVC降噪和ANC主动降噪的区别和应用
汪国
cvc降噪和主动降噪
原标题:音频知识:CVC降噪和ANC主动降噪的区别和应用降噪,对于需要长时间戴耳机的人群来讲,起到了很好的保护作用。然而在购买蓝牙耳机时总会听到商家在宣传耳机所具备的CVC、ANC降噪功能,尽管听过很多商家描述,有些小伙伴依然不是很明白这两者之间的区别以及应用。现在简单和大家介绍这两个看不懂的降噪名词。CVC降噪(ClearVoiceCapture)是通话软件降噪技术。工作原理是是通过耳机内置的消
- 玩转Docker | 使用Docker部署gopeed下载工具
心随_风动
玩转Dockerdocker容器运维
玩转Docker|使用Docker部署gopeed下载工具前言一、gopeed介绍Gopeed简介主要特点二、系统要求环境要求环境检查Docker版本检查检查操作系统版本三、部署gopeed服务下载镜像创建容器检查容器状态检查服务端口安全设置四、访问gopeed应用五、测试与下载六、总结前言在当今信息爆炸的时代,高效地获取和管理网络资源变得尤为重要。无论是下载大型文件还是进行日常的数据传输,一个稳
- 视频分析:让AI看懂动态画面
随机森林404
计算机视觉音视频人工智能microsoft
引言:动态视觉理解的革命在数字信息爆炸的时代,视频已成为最主要的媒介形式。据统计,每分钟有超过500小时的视频内容被上传到YouTube平台,而全球互联网流量的82%来自视频数据传输。面对如此海量的视频内容,传统的人工处理方式已无法满足需求,这正是人工智能视频分析技术大显身手的舞台。视频分析技术赋予机器"看懂"动态画面的能力,使其能够自动理解、解释甚至预测视频中的内容,这一突破正在彻底改变我们与视
- Python爬虫实战:使用最新技术爬取新华网新闻数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy音视频
一、前言在当今信息爆炸的时代,网络爬虫技术已经成为获取互联网数据的重要手段。作为国内权威新闻媒体,新华网每天发布大量高质量的新闻内容,这些数据对于舆情分析、市场研究、自然语言处理等领域具有重要价值。本文将详细介绍如何使用Python最新技术构建一个高效、稳定的新华网新闻爬虫系统。二、爬虫技术选型2.1技术栈选择在构建新华网爬虫时,我们选择了以下技术栈:请求库:httpx(支持HTTP/2,异步请求
- MCP协议:AI时代的“万能插座”如何重构IT生态与未来
MCP协议:AI时代的“万能插座”如何重构IT生态与未来在人工智能技术爆炸式发展的浪潮中,一个名为ModelContextProtocol(MCP)的技术协议正以惊人的速度重塑IT行业的底层逻辑。2024年11月由Anthropic首次发布,MCP在短短半年内获得OpenAI、谷歌、亚马逊、阿里、腾讯等全球科技巨头的支持,被业内誉为AI时代的HTTP协议或USB-C接口,正在成为连接大模型与现实世
- 【机器学习笔记Ⅰ】9 特征缩放
巴伦是只猫
机器学习机器学习笔记人工智能
特征缩放(FeatureScaling)详解特征缩放是机器学习数据预处理的关键步骤,旨在将不同特征的数值范围统一到相近的尺度,从而加速模型训练、提升性能并避免某些特征主导模型。1.为什么需要特征缩放?(1)问题背景量纲不一致:例如:特征1:年龄(范围0-100)特征2:收入(范围0-1,000,000)梯度下降的困境:量纲大的特征(如收入)会导致梯度更新方向偏离最优路径,收敛缓慢。量纲小的特征(如
- 【osgEarth】在osgEarth中实现的一些模型效果:雷达波、通信链路、爆炸、尾焰、轨迹、文字标牌等
bailang_zhizun
OSGosgEarthQTqtc++
学习osgEarth也有一段时间了,记录一下最近一段时间的学习成果。主要是在osgEarth三维场景中实现了一些模型效果,部分模型参考借鉴了西安恒歌的一些显示效果(当然是不能和他们比的doge),期间也从杨总(freesouths)的一些资料、文章中学到了很多,在此也感谢杨总他们的无私奉献。1、简单的仿真小场景简单的仿真小场景,感兴趣的可以看看。基于osgEarth制作的一个简单的飞机对抗仿真小场
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 【深度学习解惑】在实践中如何发现和修正RNN训练过程中的数值不稳定?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn人工智能tensorflowpytorch神经网络机器学习
在实践中发现和修正RNN训练过程中的数值不稳定目录引言与背景介绍原理解释代码说明与实现应用场景与案例分析实验设计与结果分析性能分析与技术对比常见问题与解决方案创新性与差异性说明局限性与挑战未来建议和进一步研究扩展阅读与资源推荐图示与交互性内容语言风格与通俗化表达互动交流1.引言与背景介绍循环神经网络(RNN)在处理序列数据时表现出色,但训练过程中常面临梯度消失和梯度爆炸问题,导致数值不稳定。当网络
- 专题:2025供应链数智化与效率提升报告|附100+份报告PDF、原数据表汇总下载
拓端研究室
php开发语言
全文链接:https://tecdat.cn/?p=42926在全球产业链重构与数字技术革命的双重驱动下,供应链正经历从传统经验驱动向数据智能驱动的范式变革。从快消品产能区域化布局到垂类折扣企业的效率竞赛,从人形机器人的成本优化到供应链金融对中小企业的赋能,技术创新与模式重构正在重塑行业价值网络。本报告洞察基于《灼识咨询:2025中国供应链金融科技行业蓝皮书》《中国银河证券:折扣业态供应链效率深度
- 实践YashanDB数据库安全控制的有效方法
数据库
随着数字化转型的推进,数据库的安全性成为企业面临的重要挑战之一。在现代应用中,数据泄露、篡改和非法访问等问题频频发生,给组织带来了巨大的经济损失和品牌形象损害。如何加强数据库安全控制,确保数据的保密性、完整性和可用性,是每个技术团队必须解决的问题。本文将详细探讨在YashanDB中实施有效的安全控制措施的方法,旨在为数据库管理员和技术架构师提供实用的指导和建议,以提升他们在数据库安全方面的认知与实
- Mysql:分库分表
爱吃汉堡的Saul.
数据库mysql数据库
引言:随着互联网业务的飞速发展,数据量与并发请求呈现爆炸式增长。传统的单机数据库架构,即使经过垂直扩展(如提升硬件配置、优化SQL、引入读写分离),也终将面临性能瓶颈。主要挑战体现在:单表性能极限:当单表数据行数达到千万乃至亿级时,B+树索引深度增加,导致查询效率显著下降。此外,DDL(数据定义语言)操作如添加索引、修改表结构等,可能耗时数小时并长时间锁定表,严重影响业务可用性。单库资源瓶颈:单个
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 使用Qlib基于LightGBM预测沪深300涨跌
DeepReinforce
量化投资
Qlib是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于LightGBM的梯度提升决策树(GBDT)模型,并使用金融数据集(包含158个技术指标特征)进行训练和预测。1.导入必要的模块pythonCollapseWrapRunCopyfromqlib.contrib.model.gbdtimportLGBModelfromqlib.contrib.data.handlerimport
- 【机器学习&深度学习】为什么分类任务中类别比例应接近 1:1?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是类别不平衡?二、为什么类别比例应接近1:1?2.1⚠模型容易“偏科”2.2精确率、召回率失真2.3模型训练失衡,梯度方向偏移三、现实案例中的“灾难性后果”四、如何应对类别不平衡问题?4.1数据层面处理4.2模型训练层面优化4.3评估指标替代五、实际场景举例六、模拟场景:银行信用卡欺诈检测6.1场景描述6.2数据集情况6.3模型训练结果(未处理不平衡)6.4模型做了什么?6.5实际
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- Kafka浅学
文文Tao
kafkajava分布式
Kafka应用场景?异步解耦流量消锋Kafka消息队列特点?Kafka吞吐量高:因为他存储数据时,磁盘顺序存储,磁盘的顺序存储速度很快。Kafka持久化消息:这些消息日志可以被重复读取和永久保留可以运行时动态扩展伸缩:Kafka是分布式系统:它以集群的方式运行,早期依赖Zookeeper对于Kafka的作用是什么?Zookeeper是分布式协调服务。Zookeeper作用:用于在Kafka集群中不
- 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
Jiangnan_Cai
深度学习目标检测YOLO人工智能
感觉从YOLOv6开始,YOLOv6系列感觉优化点都着重于推理速度上面,YOLOv6的RepBlock重参数化,给我的感觉就是算子融合进行加速。而YOLOv7,为了在各种架构的边缘设备上获得极致的推理速度。YOLOv7的工作:新的bagoffreebies(有效的训练技巧,不会增加推理的计算量)有规划的重参数化模型(不同边缘设备架构,不同的重参数化方法)新的动态标签分配方法为了更好的理解YOLOv
- Python爬虫实战:使用最新技术爬取头条新闻数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy音视频
一、前言:Python爬虫在现代数据获取中的重要性在当今信息爆炸的时代,数据已经成为最宝贵的资源之一。作为数据获取的重要手段,网络爬虫技术在各个领域发挥着越来越重要的作用。Python凭借其简洁的语法、丰富的库生态系统和强大的社区支持,已经成为网络爬虫开发的首选语言。本文将详细介绍如何使用Python及其最新的爬虫技术来爬取头条新闻数据。我们将从基础概念讲起,逐步深入到高级技巧,最后给出完整的爬虫
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- NCCL 核心集体通信操作深度解析:从原理到优化实践
清风 001
AI大模型底层建设gpu算力ai
目录引言:NCCL——分布式训练的通信引擎一、NCCL基础:GPU通信的“加速器”1.1NCCL与MPI的协同1.2集体通信的价值二、NCCL核心操作深度解析2.1AllGather:全局数据聚合2.1.1定义与目标2.1.2算法原理2.1.3性能影响因素2.1.4测试方法(nccl-tests)2.2AllReduce:梯度聚合的核心2.2.1定义与目标2.2.2算法原理2.2.3性能影响因素2
- 【Kafka】Kafka Producer 分区-05
boy快快长大
中间件kafka分布式
【Kafka】KafkaProducer分区-051.分区的好处2.分区策略2.1默认的分区器DefaultPartitioner3.自定义分区器1.分区的好处(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。(2)提高并行度,生产者可以以分区为单位发送数据;消
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- Python爬虫实战:研究pyparsing工具相关技术
ylfhpy
爬虫项目实战python爬虫开发语言pyparsing文本处理文本分析
1.引言在当今信息爆炸的时代,网络上存在着海量的非结构化文本数据。如何从这些数据中提取有价值的信息,成为了数据科学领域的一个重要研究方向。网络爬虫技术可以帮助我们自动获取这些数据,而Pyparsing则提供了强大的语法分析能力,可以将非结构化的文本转换为结构化的信息。本文将介绍一个完整的案例,展示如何使用Python的爬虫技术结合Pyparsing工具,构建一个网络内容分析系统。该系统可以爬取特定
- 微算法科技(NASDAQ: MLGO)探索Grover量子搜索算法,利用量子叠加和干涉原理,实现在无序数据库中快速定位目标信息的效果。
MicroTech2025
算法科技数据库
在信息爆炸的时代,数据的海量化带来了前所未有的挑战,如何从庞大的数据库中迅速找到所需信息,成为信息技术领域亟待解决的问题。传统的搜索算法在面对大规模数据时,效率逐渐下降,难以满足现代社会的需求。量子计算的出现为解决这一问题带来了新的思路和方法,Grover量子搜索算法作为量子计算领域的重要算法之一,在快速搜索目标信息方面具有巨大潜力。Grover量子搜索算法是一种基于量子力学原理的搜索算法,它利用
- Java构建区块链版权交易平台:从智能合约到法律合规的全栈实战
墨夶
Java学习资料1java区块链智能合约
——基于HyperledgerFabric与SpringBoot的版权交易系统设计数字版权时代的“信任危机”与技术破局在数字内容爆炸式增长的今天,版权侵权问题日益严峻。据统计,全球每年因版权纠纷造成的经济损失高达数百亿美元。Java技术栈凭借其企业级开发能力、区块链集成优势及完善的生态工具链,成为构建版权交易平台的核心选择。本文将从区块链存证、智能合约交易、法律合规模块三大维度,通过代码级深度解析
- 时序数据库:高效处理时间序列数据的核心技术
时序数据说
时序数据库数据库开源物联网iotdb
时序数据库概述时序数据库(TimeSeriesDatabase,TSDB)是一种专门为存储、处理和查询时间序列数据而优化的数据库系统。随着物联网、金融科技、工业互联网等领域的快速发展,时序数据呈现出爆炸式增长,传统的关系型数据库在处理这类数据时面临诸多挑战,时序数据库应运而生并成为关键技术解决方案。时序数据的特点时序数据具有几个显著特征,这些特征直接影响了时序数据库的设计理念:时间属性:每条记录都
- Docker技术笔记-从零开始的容器技术之旅
青竹易寒
docker学习容器
理论一、容器技术简介容器是一种轻量级、可移植、隔离的软件环境,通过操作系统级虚拟化实现资源隔离,确保应用程序在不同环境中能够保持一致运行。容器和虚拟机对比对比维度容器(Docker)虚拟机(VM、KVM)架构原理共享宿主机内核,通过命名空间(Namespaces)和控制组(Cgroups)实现资源隔离。通过Hypervisor虚拟化硬件资源,每个VM运行独立完整的操作系统(GuestOS)。资源消
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那