leetcode 1314. 矩阵区域和(优质解法)

leetcode 1314. 矩阵区域和(优质解法)_第1张图片

代码:

class Solution {
    public int[][] matrixBlockSum(int[][] mat, int k) {
        int m=mat.length;
        int n=mat[0].length;

        int[][]answer=new int[m][n];    //要返回的结果矩阵
        int[][]sum=new int[m+1][n+1];   //前缀和数组

        //初始化前缀和数组
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+mat[i-1][j-1];
            }
        }

        //获取要计算区间的下标(x1,y1)(x2,y2)
        for(int i=0;i

题解:

        本题的题意可能有点不好理解,可以通过我下面画的图来进行理解

leetcode 1314. 矩阵区域和(优质解法)_第2张图片

        如上图,当想要获得 answer[ i ][ j ] 的值时,需要计算 mat 数组中 (i-k,j-k)到 (i+k,j+k)这个矩形中的数据总和

        有关计算矩形中数据和的题目,通常使用二维前缀和来解决

        首先需要计算 mat 数组对应的二维前缀和数组 sum,sum[ i ][ j ] 就代表 mat 数组中从(1,1)下标到(i,j)下标二维数组数据的总和

        关于填充二维前缀和数组,以及如何利用二维前缀和数组计算出指定区间中的数据和,都在之前的博客中详细写过,推荐看牛客网 DP35 【模板】二维前缀和

        看了上述博客后解决该题目的主体就懂了,现在就要介绍一些细节问题,假设要计算的二维数组是(x1,y1)到(x2,y2)区间,按照题目的要求进行计算时会出现越界的情况,x1 和 y1 下标会出现比 0 小的情况,此时就需要把 x1 和 y1 放到 0 位置上,如下图所示,x2,y2 的下标会出现比 m-1,n-1 大的情况,此时也需要把 x2,y2,放到 m-1,n-1 的位置上

leetcode 1314. 矩阵区域和(优质解法)_第3张图片

        在编写代码时还要注意前缀和数组是比 mat 和 answer 数组多一行一列的(为了消除边界影响),所以 mat[ i ][ j ] 对应 sum[ i+1 ][ j+1 ] 

你可能感兴趣的:(leetcode,leetcode,矩阵,算法)