- java+vue+SpringBoo智慧旅游系统(程序+数据库+报告+部署教程+答辩指导)
源代码+数据库+LW文档(1万字以上)+开题报告+答辩稿ppt+部署教程+代码讲解+代码时间修改工具技术实现开发语言:后端:Java前端:vue框架:springboot数据库:mysql开发工具JDK版本:JDK1.8数据库:mysql数据库工具:Navicat开发软件:idea主要角色及功能介绍本次系统的用例图做出了十分明确的功能划分,在设计时可以有很好的设计思路进行设计和延展。(1)管理员用
- 堆排序实现及复杂度分析
hixiaoyang
算法排序算法数据结构
一、算法概述堆排序(HeapSort)是一种基于二叉堆数据结构的比较排序算法。它利用了堆这种数据结构的特性:最大堆:每个节点的值都大于或等于其子节点的值最小堆:每个节点的值都小于或等于其子节点的值堆排序是不稳定排序算法,时间复杂度为O(nlogn),空间复杂度为O(1)二、算法步骤1.构建初始堆将无序数组构建成一个最大堆(升序排序时)2.交换与调整将堆顶元素(最大值)与末尾元素交换缩小堆的范围,重
- Web3.0 技术应用溯源系统建设
天机️灵韵
区块链区块链web3.0
Web3.0技术与溯源(TrackandTrace)的结合,是区块链等去中心化技术在实际应用中的典型场景之一。通过Web3.0的底层技术,可以构建透明、不可篡改且可验证的溯源系统,解决传统供应链、商品流通等领域的数据信任问题。以下是两者的深度关联与具体应用:一、Web3.0如何赋能溯源?区块链的不可篡改性核心机制:区块链通过哈希链、共识算法(如PoW/PoS)确保数据一旦上链,无法被单一方修改或删
- AI原生应用监控:实时领域偏见预警系统设计原理
Agentic AI人工智能与大数据
CSDNAI-native人工智能ai
AI原生应用监控:实时领域偏见预警系统设计原理关键词AI监控、算法偏见、实时预警、公平性AI、模型监控、偏见检测、AI治理摘要在人工智能驱动决策日益普及的今天,AI系统中的隐性偏见已成为影响公平性、可信度和业务连续性的关键风险。本文深入探讨了AI原生应用监控的核心挑战,重点剖析了实时领域偏见预警系统的设计原理与实现方法。通过将复杂的算法偏见比作"数字世界的隐形滤镜",我们揭示了偏见如何在AI系统中
- 【加密】对称加密DES和非对称加密AES、数字签名
bdview
算法区块链密码学openssljava
目录对称加密1.1定义1.2优缺点1.3常用对称加密算法非对称加密(AsymmetricCryptography)非对称加密(现代加密算法)2.1定义数字签名非常好的文章:《三分钟了解对称加密和非对称加密是如何工作的》https://zhuanlan.zhihu.com/p/108627377主要加密算法有哪些:https://blog.csdn.net/baidu_22254181/articl
- 【数据结构与算法】单向链表(添加节点、顺序添加节点、更新节点、删除节点、反转链表、获取链表长度、获取倒数第几个节点、打印链表、反转打印链表)
目录1.单向链表的介绍2.带head头的单向链表实现1.单向链表的介绍单向链表是有序的列表。以节点的方式来存储,是链式存储,每个节点包含data域和next域(指向下一个节点),所以单向链表在内存中的储存是无序的单向链表分带头节点的单向链表,和没有头节点的单向链表2.带head头的单向链表实现实现对单向链表的增、删、改、查等操作单向链表各节点说明:head节点:不储存数据,next指向下一个节点最
- 招聘 | 美团 AI 搜索:致力用 AI 技术创造极致的搜索和交互体验
美团技术团队
人工智能大数据
敢用算法定义下一代搜索体验吗?我们正在寻找「AI狂热分子」——能让搜索结果秒懂用户灵魂需求的算法魔法师、精准雕琢搜索体验的算法工程技术革新者敢用大模型重构搜索逻辑的技术造浪者、深耕算法工程实践的大模型架构驾驭者愿用数据和代码解锁智能边界的未来架构师、用工程代码与数据打破技术边界的技术领航人和我们一起,可以做些什么?AI搜索团队致力于打造以智能搜索为核心的新型产品,以满足用户需求为目标,专注于为用户
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 在单向链表中插入节点——C语言基础
FifthDesign
链表单链表数据结构算法C语言
向单向链表插入节点前言:链表的插入过程就是把新建的节点插入到已有的链表中,鉴于此种理解,也可以把链表的创建看做是一种特殊的插入节点过程,但是具体来说,链表的插入较于链表的创建来说稍复杂一些。文章目录向单向链表插入节点一、问题描述二、算法描述三、代码部分1.structure.h2.insert.h四、代码解析1.对于单向链表来说,插入为什么需要引入两个工具指针?2.指针变量的初始化![在这里插入图
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- 深入了解Stable Diffusion:解锁AI图像生成的神秘密码 ?????
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
深入了解StableDiffusion:解锁AI图像生成的神秘密码?????StableDiffusion:AI的像素炼金术士基础概念:从扩散到聚焦的魔法技术深潜:核心机制解析反向扩散算法代码实验室:动手实践StableDiffusion的魔法示例一:一句话,一个世界示例二:风格迁移的艺术实战技巧与最佳实践实际挑战与解决方案结语:艺术与科技的无限对话在这个数字洪流涌动的时代,AI图像生成技术正以前
- g711a音频编码记录
写了个安卓wavpcmhttp直播流的程序。客户端采用sdl2直接播放pcm.工作的很好,但是,非常耗费带宽差不多100kb/s的网速。非常不利于外网的音频传输。尝试用zlib压缩,效果不尽理想。只压缩成90%。节约了1/10带宽遂放弃。尝试了安卓端mp3直播,效果不错,差不多带宽30kb/s。但是mp3有个很大的问题,就是延迟增大了几秒。研究了下wav压缩音频格式,发觉还有g711a,这个算法比
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- AI--提升效率、驱动创新的核心引擎
保持学习ing
AI编程自动化低代码
自动化代码生成、低代码/无代码开发、算法优化实践等新兴技术在软件开发领域正逐渐崭露头角。这些技术为开发者提供了更高效、更便捷的开发方式,大大提升了软件开发的效率和质量。本文重点探讨的是这些技术在实际应用中的价值和优势。1、自动化代码生成1.1优势自动化代码生成是利用机器学习和人工智能技术,通过分析需求和已有代码,生成可用的代码片段或完整的程序。这种技术可以极大地减少开发人员的工作量,提高开发效率。
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- 四阶数独——深度优先搜索dfs
我爱工作&工作love我
c++深度优先算法
文章目录四阶数独例题讲解深度优先dfs搜索知识点算法思想应用代码框架四阶数独例题讲解题目描述这里讨论一种简化的数独——四阶数独。给出一个4×4的格子,每个格子只能填写1到4之间的整数,要求每行、每列和四等分更小的正方形部分都刚好由1到4组成。求总共有多少种不同的数独?输出结果:288思路常规思路就是根据格子序号挨个设置数如果每次都是从第一个开始设置,暴力枚举,一个格子四种选择,16个格子所以就有4
- 数据结构——图的遍历之深度优先遍历(DFS算法)_全世界最可爱的王小帅_CSDN博客
全世界最可爱的王小帅
数据结构图论算法cppc#
数据结构——图的遍历之深度优先遍历图的遍历一般分为深度优先遍历和广度优先遍历下面我们要说的是深度优先遍历**(DFS算法)**1,我们首先选择一个顶点作为起始点,假设我们选择顶点v作为起始点,首先访问v,然后找v的邻接点,访问v的一个还未被访问过邻接点w1,2,再以w1为起始点,然后去找w1的邻接点,访问w1的一个还未被访问过的邻接点w2,再以w2作为起始点继续往下访问…3,如果我们访问到一个顶点
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 数据结构与算法:深度优先的实战指南
数据结构与算法:深度优先的实战指南关键词:深度优先搜索(DFS)、递归、栈、图遍历、路径查找、迷宫寻路、算法实战摘要:深度优先搜索(DFS)是计算机科学中最经典的算法之一,被广泛应用于路径查找、游戏AI、社交网络分析等场景。本文将用“迷宫探险”的故事串联核心概念,结合生活案例、代码实战和LeetCode经典题,带您从0到1掌握DFS的底层逻辑与实战技巧。即使你是算法新手,也能通过通俗易懂的讲解,真
- 从零开始:Python实现语音识别的完整教程
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络python语音识别xcodeai
从零开始:Python实现语音识别的完整教程关键词:Python、语音识别、完整教程、语音输入、文字输出摘要:本文将带领大家从零开始,用Python实现语音识别功能。我们会详细介绍语音识别的核心概念、相关算法原理,通过具体的代码示例,一步步教大家搭建开发环境、实现语音识别代码,并对代码进行解读。同时,还会探讨语音识别的实际应用场景、推荐相关工具和资源,最后分析未来发展趋势与挑战。背景介绍目的和范围
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- C++ STL常用二分查找算法
basketball616
C++基础算法c++数据结构
lower_boundlower_bound是C++标准库算法,通常用于有序序列中查找第一个不小于给定值的元素。它属于头文件,并且是基于二分查找实现的,因此要求输入序列必须是有序的。基本语法#include//引入算法库Iteratorlower_bound(Iteratorfirst,Iteratorlast,constT&value);first和last是迭代器,分别表示容器的起始位置和结束
- 鸿蒙仓颉语言开发实战教程:购物车页面
合集-仓颉教程(31)1.详解鸿蒙仓颉开发语言中的日志打印问题05-212.鸿蒙仓颉开发语言实战教程:实现商城应用首页05-223.鸿蒙仓颉开发语言实战教程:页面跳转和传参05-254.鸿蒙仓颉语言开发教程:页面和组件的生命周期05-285.鸿蒙仓颉语言开发实战教程:购物车页面06-036.鸿蒙仓颉语言开发实战教程:商城登录页06-047.鸿蒙仓颉语言开发实战教程:商城搜索页06-058.鸿蒙仓颉
- 算法竞赛备考冲刺必刷题(C++) | 洛谷 P1001 A+B Problem
热爱编程的通信人
c++算法
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺
- 贪心算法(集合覆盖问题)
RonzL
算法与数据结构贪心算法集合覆盖问题java算法
一、贪心算法概述贪心算法的核心思想可以总结为:贪心算法总是做出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解,如单源最短路经问题,最小生成树问题等。虽然在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解
- OJ练习第110题——扰乱字符串
盖盖的博客
OJ练习算法javaleetcode
扰乱字符串力扣链接:87.扰乱字符串题目描述使用下面描述的算法可以扰乱字符串s得到字符串t:如果字符串的长度为1,算法停止如果字符串的长度>1,执行下述步骤:在一个随机下标处将字符串分割成两个非空的子字符串。即,如果已知字符串s,则可以将其分成两个子字符串x和y,且满足s=x+y。随机决定是要「交换两个子字符串」还是要「保持这两个子字符串的顺序不变」。即,在执行这一步骤之后,s可能是s=x+y或者
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla