机器学习经典算法之决策树(Decision Tree)

决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。机器学习中,决策树是一个预测模型,它表示对象属性与对象值之间的一种映射。

决策树既可以解决分类问题,也可以解决回归问题。一般情况下常用于分类问题,因此也常常称为分类决策树。

一个决策树包含三种类型的节点:

  1. 决策节点:通常用矩形框来表示

  2. 机会节点:通常用圆圈来表示

  3. 终结点:通常用三角形来表示

决策树生成步骤

  1.  开始,将所有数据样本看作一个节点
  2. 遍历每个变量的每一种分割方式,找到最好的分割点
  3. 分割成两个节点N1和N2
  4. 对N1和N2分别继续执行2-3步,直到每个节点足够“纯”为止

决策树建模过程

收集数据:可以使用任何方法。

准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。

分析数据:可以使用任何方法,构造树完成后,我们应该检查图形是否符合预期。

训练算法:构造树的数据结构。

测试算法:使用经验树计算错误率。

使用算法:此步骤可以适用于任何机器学习算法,而使用决策树可以更好地理解数据的内在含义。

常见算法

比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。下面介绍具体步骤。

ID3

ID3算法由增熵(Entropy)原理来决定那个做父节点,那个节点需要分裂。对于一组数据,熵越小说明分类结果越好。熵定义如下:

Entropy=- sum [p(x_i) * log2(P(x_i) ]

其中p(x_i) 为x_i出现的概率。假如是2分类问题,当A类和B类各占50%的时候,

Entropy = - (0.5*log_2( 0.5)+0.5*log_2( 0.5))= 1

当只有A类,或只有B类的时候,

Entropy= - (1*log_2( 1)+0)=0

所以当Entropy最大为1的时候,是分类效果最差的状态,当它最小为0的时候,是完全分类的状态。因为熵等于零是理想状态,一般实际情况下,熵介于0和1之间。

熵的不断最小化,实际上就是提高分类正确率的过程。

比如上表中的4个属性:单一地通过以下语句分类:

1. 分数小于70为【不是好学生】:分错1个

2. 出勤率大于70为【好学生】:分错3个

3. 问题回答次数大于9为【好学生】:分错2个

4. 作业提交率大于80%为【好学生】:分错2个

最后发现 分数小于70为【不是好学生】这条分错最少,也就是熵最小,所以应该选择这条为父节点进行树的生成,当然分数也可以选择大于71,大于72等等,出勤率也可以选择小于60,65等等,总之会有很多类似上述1~4的条件,最后选择分类错最少即熵最小的那个条件。而当分裂父节点时道理也一样,分裂有很多选择,针对每一个选择,与分裂前的分类错误率比较,留下那个提高最大的选择,即熵减最大的选择。

 

C4.5

通过对ID3的学习,可以知道ID3存在一个问题,那就是越细小的分割分类错误率越小,所以ID3会越分越细,比如以第一个属性为例:设阈值小于70可将样本分为2组,但是分错了1个。如果设阈值小于70,再加上阈值等于95,那么分错率降到了0,但是这种分割显然只对训练数据有用,对于新的数据没有意义,这就是所说的过度学习(Overfitting)。

分割太细了,训练数据的分类可以达到0错误率,但是因为新的数据和训练数据不同,所以面对新的数据分错率反倒上升了。决策树是通过分析训练数据,得到数据的统计信息,而不是专为训练数据量身定做。

所以为了避免分割太细,c4.5对ID3进行了改进,C4.5中使用信息增益率,显然分割太细分母增加,信息增益率会降低。除此之外,其他的原理和ID3相同。

CART:分类回归树

CART是一个二叉树,也是回归树,同时也是分类树,CART的构成简单明了。

CART只能将一个父节点分为2个子节点。CART用GINI指数来决定如何分裂:

GINI指数:总体内包含的类别越杂乱,GINI指数就越大(跟熵的概念很相似)。

a. 比如出勤率大于70%这个条件将训练数据分成两组:大于70%里面有两类:【好学生】和【不是好学生】,而小于等于70%里也有两类:【好学生】和【不是好学生】。

b. 如果用分数小于70分来分:则小于70分只有【不是好学生】一类,而大于等于70分有【好学生】和【不是好学生】两类。

比较a和b,发现b的凌乱程度比a要小,即GINI指数b比a小,所以选择b的方案。以此为例,将所有条件列出来,选择GINI指数最小的方案,这个和熵的概念很类似。

CART还是一个回归树,回归解析用来决定分布是否终止。理想地说每一个叶节点里都只有一个类别时分类应该停止,但是很多数据并不容易完全划分,或者完全划分需要很多次分裂,必然造成很长的运行时间,所以CART可以对每个叶节点里的数据分析其均值方差,当方差小于一定值可以终止分裂,以换取计算成本的降低。

CART和ID3一样,存在偏向细小分割,即过度学习(过度拟合的问题),为了解决这一问题,对特别长的树进行剪枝处理,直接剪掉。

 

你可能感兴趣的:(机器学习,决策树,Decision,Tree)