- Tuning Language Models by Proxy
樱花的浪漫
对抗生成网络与动作识别强化学习因果推断大模型与智能体人工智能机器学习深度学习自然语言处理计算机视觉神经网络
TuningLanguageModelsbyProxyhttps://arxiv.org/html/2401.08565v41.概述尽管大型预训练语言模型的通用能力越来越强,但它们仍然可以从额外的微调中受益,以更好地实现所需的行为。例如,它们通常被微调以遵循指令(Ouyang等人,2022年)、特定的兴趣领域(Gururangan等人,2020年)或特定任务(Raffel等人,2020年)。然而,
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟
Loving_enjoy
计算机学科论文创新点机器学习人工智能facebook课程设计
>**人类小脑数亿年进化出的运动智慧,成了AI最难破解的密码**2025年3月,一位网友困惑地发问:“我想让人工智能替我洗碗做饭洗衣服,没想到现在的AI反而在画画、写歌、搞创作……”对此,全国政协委员、中国科学院自动化研究所研究员赵晓光一针见血地指出:**“大模型没有创新能力,想让AI干体力活还要靠具身智能的发展。”**这个看似矛盾的现象背后,隐藏着人工智能发展进程中一个惊人的认知盲区。清华大学心
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- 【AI论文】FineWeb2:一个管道,规模适配所有语言——使预训练数据处理适应每一种语言
东临碣石82
人工智能深度学习机器学习
摘要:预训练最先进的大型语言模型(LLMs)需要大量干净且多样的文本数据。尽管近期在开放开发大型高质量英文预训练数据集方面取得了显著进展,但训练性能出色的多语言大型语言模型仍面临挑战,这很大程度上是因为难以针对大量语言定制过滤和去重流程。在本研究中,我们基于FineWeb引入了一种全新的预训练数据集整理流程,该流程可自动适配任意语言。我们通过一组涵盖九种不同语言的实验,对流程设计进行了广泛消融研究
- 2025主流AI大模型终极指南:横向对比+实战测评+官方注册教程
AI新视界
AI工具全指南:从入门到精通解锁高效生产力人工智能
《2025主流AI大模型终极指南:横向对比+实战测评+官方注册教程》在人工智能技术飞速发展的今天,大型语言模型(LLM)已成为推动数字化转型的核心引擎。作为CSDN资深AI技术专家,我将通过本文为您全面剖析2025年主流大模型的技术特点、应用场景和性能差异,并提供详细的官方注册和使用指南,帮助您快速掌握这些强大的AI工具。一、2025年主流大模型全景概览1.1大模型技术发展现状2024-2025年
- AIGC视觉生成革命:文生图、图生图与视频生成垂直模型发展全景报告(2025)
Liudef06小白
AIGC人工智能AI作画语言模型
一、引言:从实验工具到产业引擎的跃迁人工智能生成内容(AIGC)技术正经历从文本向多模态的范式转移。2023-2025年间,文生图、图生图与视频生成垂直模型逐步跨越技术奇点,从实验室玩具进化为工业化生产力工具。这一进程的核心驱动力在于架构创新、数据优化与场景深耕的三重突破:扩散模型与Transformer的融合催生了更高保真度的图像生成;十亿级多模态数据训练解决了复杂语义理解难题;而面向影视、电商
- [论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
张较瘦_
前沿技术论文阅读人工智能
读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法论文标题:Meta-Fair:AI-AssistedFairnessTestingofLargeLanguageModelsarXiv:2507.02533Meta-Fair:AI-AssistedFairnessTestingofLargeLanguageModelsMiguelRomero-Arjona,JoséA.Parejo,Jua
- 深度 |AI高质量数据集交易爆发式增长
数智前沿
数字化转型人工智能数据集
AI产业从通用模型向行业垂直应用快速融合下沉的阶段演进,人工智能三大基本要素之一数据,面临的高质量数据不足问题却凸显。财联社记者最新从业内获悉,目前各大模型企业迫切希望获得更多更好的高质量数据集,需求集中于头部企业行业知识底座构建,人工智能高质量数据集的需求量、交易量激增,已成为数据流通最活跃的领域。不过,高质量数据集的建设、流通环节均面临诸多问题,目前数据交易所并非模型语料最主要的采购途径。需求
- 轻量化分布式AGI架构:基于区块链构建终端神经元节点的互联网智脑
探客木木夕
分布式agi人工智能架构区块链
在2025年的技术发展背景下,轻量化分布式AGI架构正成为人工智能领域的重要突破方向。通过将终端设备转化为神经元节点,结合区块链技术构建去中心化的互联网智脑,不仅能够突破传统AGI开发的算力瓶颈,还能实现数据安全共享与价值分配。**这一架构将重塑人工智能的发展范式,使AGI能力从中心化实验室扩散至全球终端设备网络,最终形成一个去中心化、自演进、高可用的互联网级智能系统**。研究显示,通过知识密度提
- 写测试太烦?Copilot + Jest 让你 3 分钟搞定单元测试
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Python编程电子书:从基础到实践
王奥雷
本文还有配套的精品资源,点击获取简介:Python电子书汇集了基础语法、面向对象编程、标准及第三方库使用、文件操作、网络编程、并发编程、单元测试与调试、Python2与Python3的区别等核心知识点。通过实例和项目案例,帮助读者在Web开发、数据分析、人工智能等应用领域提升编程技能,跟上Python的技术进步。1.Python基础语法介绍Python作为一种高级编程语言,其易读性和简洁的语法使其
- 开源模型应用落地-OpenAI Agents SDK-集成MCP与Qwen3-8B模型的创新应用探索(七)
开源技术探险家
开源模型-实际应用落地开源pythonai人工智能
一、前言在人工智能技术飞速发展的今天,如何将先进的模型和技术无缝结合,成为推动行业变革的关键。OpenAIAgents通过集成模型上下文协议(MCP)和阿里巴巴推出的Qwen3-8B模型,正开启一场智能应用的革命。这种创新的结合不仅提升了AI代理与外部工具之间的通信能力,还在多模态任务处理、个性化服务等领域展现出巨大潜力。本文将深入探讨这一技术组合的实际应用场景,揭示其在改善客户体验和提升运营效率
- 开源模型应用落地-OpenAI Agents SDK-集成Qwen3-8B-探索output_guardrail的创意应用(六)
开源技术探险家
开源模型-实际应用落地开源pythonai人工智能
一、前言随着人工智能技术的迅猛发展,大语言模型(LLM)在各行各业的应用日益广泛。然而,模型生成的内容是否安全、合规、符合用户预期,成为开发者和企业不可忽视的问题。为此,OutputGuardrail应运而生,作为一种关键的安全机制,它在模型生成结果之后进行内容审核与过滤,确保输出不偏离道德、法律和业务规范。通过检测不当的内容,不仅提升了AI系统的可信度,也为构建更加稳健和负责任的人工智能应用提供
- 开源模型应用落地-让AI更懂你的每一次交互-Mem0集成Qdrant、Neo4j与Streamlit的创新实践(四)
开源技术探险家
开源模型-实际应用落地neo4j开源人工智能语言模型
一、前言在人工智能迅速发展的今天,如何让AI系统更懂“你”?答案或许藏在个性化的记忆管理之中。Mem0作为一个开源的记忆管理系统,正致力于为AI赋予长期记忆与个性化服务能力。通过结合高性能向量数据库Qdrant、图数据库Neo4j的强大关系分析能力以及Streamlit的高效可视化交互,我们可以打造出一个既能存储用户历史行为、又能实时推理并展示结果的智能记忆助手。本文将带您一步步探索这一技术组合的
- 【优秀文章】7月优秀文章推荐
优秀文章智能自主运动体与人工智能技术——环境感知、SLAM定位、路径规划、运动控制、多智能体协同作者:fpga和matlabC++之红黑树认识与实现作者:zzh_zao【手把手带你刷好题】–C语言基础编程题(十)作者:草莓熊Lotso飞算JavaAI:从“码农”到“代码指挥官”的终极进化论作者:可涵不会debug前端网页开发学习(HTML+CSS+JS)有这一篇就够!作者:一颗小谷粒
- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- star31.6k,Aider:让代码编写如虎添翼的终端神器
ider是一款运行在终端中的AI结对编程工具,它能与大型语言模型(LLM)无缝协作,直接在您的本地Git仓库中编辑代码。无论是启动新项目,还是优化现有代码库,Aider都能成为您最得力的助手。它支持Claude3.5Sonnet、DeepSeekV3、GPT-4o等顶级AI模型,几乎可以连接任何LLM,让编程体验如虎添翼。Stars数35,188Forks数3,230主要特点Git操作:Aider
- 【计算机毕业设计】基于Springboot的办公用品管理系统+LW
枫叶学长(专业接毕设)
Java毕业设计实战案例课程设计springboot后端
博主介绍:✌全网粉丝3W+,csdn特邀作者、CSDN新星计划导师、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:
- MongoDB + Voyage AI 详解:重塑数据库与AI的协同范式
csdn_tom_168
NoSQL数据库mongodb人工智能AI
MongoDB+VoyageAI详解:重塑数据库与AI的协同范式2025年2月,MongoDB官方宣布收购VoyageAI,这一举措标志着数据库与人工智能技术的深度融合迈入新阶段。通过整合VoyageAI的先进AI检索与嵌入模型能力,MongoDB旨在重新定义AI时代的数据库架构,为企业构建智能应用提供端到端的数据基础设施。一、收购背景与技术战略1.行业趋势驱动AI数据挑战:随着生成式AI与大语言
- HarmonyOS5.0仓颉引擎与盘古大模型:个性化作业批改系统架构设计与实现
H老师带你学鸿蒙
系统架构HarmonyOS5.0鸿蒙华为仓颉教育
人工智能与边缘计算的融合正在重塑教育评价体系。本文将展示如何基于HarmonyOS5.0仓颉并发引擎和盘古大模型,构建新一代智能作业批改系统。系统架构全景graphTDA[学生端设备]-->|提交作业|B[仓颉边缘处理]B-->C[盘古大模型分析]C-->D[个性化反馈生成]D-->E[学生终端]D-->F[教师仪表盘]subgraphHarmonyOS分布式系统B-->|设备协同|G[教室平板集
- 阿里云瑶池数据库 Data Agent for Meta 正式发布,让 AI 更懂你的业务!
数据库观点资讯人工智能
背景随着生成式人工智能(GenerativeAI)从概念验证迈向规模化商业落地,AIAgent已成为企业核心业务流程的重要组成部分。然而,当模型调用日益便捷时,核心痛点已不再是模型本身,而是集中在一个关键要素上:数据。AIAgent的落地瓶颈已从技术能力转向高质量、高相关性、安全合规的数据供给。企业面临的核心挑战在于:数据孤岛导致知识库分散,通用大模型难以理解专业业务传统数据管理依赖人工开发维护,
- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那