1 简介
针对鲸鱼优化算法(WOA)存在收敛精度低和收敛速度慢的问题,提出基于混沌权重和精英引导的先进鲸鱼优化算法(AWOA).考虑算法前期搜索的随机性对收敛速度的影响,引入精英个体引导机制,利用精英个体的进化反馈信息及时调整种群的搜索方向,加强算法的全局搜索能力.在算法后期引入混沌动态权重因子加强算法的局部搜索能力,提高算法的收敛精度,对多个基准测试函数进行对比仿真实验,结果表明:改进的鲸鱼算法具有更高的寻优性能.
WOA 是受鲸鱼独特的泡泡网觅食行为启发而提出的,在自然界中,鲸鱼通过随机游走寻找猎物,当定位到猎物后,通过收缩螺旋包围形成泡泡网攻击猎物。通过模拟这种行为,基本的 WOA 包括三个阶段: 游走搜索猎物、收缩包围机制、螺旋包围机制。
2 部分代码
%_________________________________________________________________________%
% 鲸鱼优化算法 %
%_________________________________________________________________________%
% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
t=0;% Loop counter
% Main loop
while t for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:) Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitness Leader_score=fitness; % Update alpha Leader_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(SearchAgents_no*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Leader_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); end end end t=t+1; Convergence_curve(t)=Leader_score; end 3 仿真结果 4 参考文献 [1]黄辉先, 张广炎, 陈思溢,等. 基于混沌权重和精英引导的鲸鱼优化算法[J]. 传感器与微系统, 2020, 39(5):4. 博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。 部分理论引用网络文献,若有侵权联系博主删除。完整代码获取关注微信公众号天天matlab