- 目标检测YOLO实战应用案例100讲-基于深度学习的无人机目标检测算法轻量化研究(中)
林聪木
目标检测YOLO深度学习
目录基于改进YOLOv5的无人机图像实时目标检测4.1引言4.2基于改进YOLOv5的目标检测模型结构4.3消融实验及结果分析4.4算法迁移验证实验基于Jetson-Xavier的模型优化部署5.1引言5.2基于人在回路的目标检测模型裁剪5.3嵌入式实时目标检测交互软件基于深度学习的无人机目标检测算法轻量化研究知识拓展基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的无人机目标检测1.数
- OpenCV 基础模块 Python 版
ice_junjun
OpenCVopencvpython计算机视觉
OpenCV基础模块权威指南(Python版)一、模块全景图plaintextOpenCV架构(v4.x+)├─核心层│├─core:基础数据结构与操作(Mat/Scalar/Point)│└─imgproc:图像处理流水线(滤波→变换→检测)├─交互层│├─highgui:GUI与媒体I/O(显示/捕获/交互)│└─video:视频分析(运动检测/目标跟踪)├─3D视觉层│└─calib3d:相
- C++开发内存监控工具推荐
点云SLAM
开发工具开发环境c++开发语言AddPropertygperftoolsAddress内存监控访问越界
在C++开发中,内存管理是至关重要的,尤其是当程序处理大数据或长时间运行时,内存泄漏或不当使用可能导致性能下降或崩溃。以下是几种常见且有效的内存监控工具,它们可以帮助开发者实时分析、诊断和优化程序的内存使用。1.ValgrindValgrind是一个广泛使用的内存调试和性能分析工具,它的Memcheck工具可以帮助你检查程序中的内存泄漏、内存越界、未初始化内存使用等问题。特点:检测内存泄漏。检查内
- Python---frozenset集合
爱听雨声的北方汉
快快乐乐学PythonPython
frozenset是set的不可变版本,因此set集合中所有能改变集合本身的方法(如add、remove、discard、xxx_update等),frozenset都不支持;set集合中不改变集合本身的方法,fronzenset都支持。frozenset的作用主要有以下两点:1、当集合元素不需要改变时,使用frozenset代替set更安全。2、当某些API需要不可变对象时,必须用frozens
- redis过期删除、内存淘汰、双写一致性---java
皮卡兔子屋
#redisredisjavamybatis
过期删除Redis的缓存失效不会立即删除,Redis的过期删除策略是选择「惰性删除+定期删除」这两种策略配和使用。惰性删除策略的做法是,不主动删除过期键,每次从数据库访问key时,都检测key是否过期,如果过期则删除该key。定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的key进行检查,并删除其中的过期key。内存淘汰Redis提供了8种不同的数据淘汰策略,默认是noevict
- 跨域自监督学习:打破数据壁垒的创新突破
mslion
学习人工智能跨模态学习深度学习计算机视觉自监督表示学习
近年来,跨域学习和跨模态学习在多个应用领域中取得了显著的进展。尽管不同领域和模态之间的数据分布差异和标注数据稀缺常常带来挑战,但越来越多的研究集中在如何通过自监督学习和无监督领域适应技术来解决这些问题。自监督学习作为一种无需大量标注数据的方法,能够有效地从未标注数据中提取有用特征,并在跨域或跨模态设置中增强模型的迁移能力和泛化能力。此外,如何处理源域和目标域之间的差异,使得模型能够在多领域或跨模态
- YOLOv8 改进:添加 AKConv(任意采样形状和任意数目参数的卷积)
鱼弦
人工智能时代YOLO
YOLOv8改进:添加AKConv(任意采样形状和任意数目参数的卷积)引言在目标检测领域中,YOLO(YouOnlyLookOnce)系列因其速度和效率而受到广泛关注。为了进一步优化模型性能,可以引入创新的卷积操作,例如AKConv,即“任意采样形状和任意数目参数的卷积”。这种卷积能够灵活地调整采样策略,以更好地适应输入特征。技术背景传统卷积运算在采样位置和参数数量上具有固定性,这限制了其对复杂几
- 为什么要制定执行标准?
德为先科技
标准执行标准业界资讯大数据
一、确保工作质量和效率1、明确工作要求:清晰界定各项工作的具体内容、流程和质量标准,员工能明确努力方向,减少工作中的不确定性和盲目性,从而提高工作质量和效率。2、规范操作流程:统一工作方法和步骤,避免因个人操作差异导致的质量波动或效率低下,有助于实现标准化作业,便于进行质量控制和管理。二、保障产品或服务的一致性1、满足客户期望:无论何时何地,客户都能享受到质量稳定、标准统一的产品或服务,有助于树立
- 目标检测领域总结:从传统方法到 Transformer 时代的革新
DoYangTan
目标检测系列目标检测transformer人工智能
目标检测领域总结:从传统方法到Transformer时代的革新目标检测是计算机视觉领域的一个核心任务,它的目标是从输入图像中识别并定位出目标物体。随着深度学习的兴起,目标检测方法已经取得了显著的进展。从最早的传统方法到现如今基于Transformer的先进算法,目标检测的发展经历了多个重要的阶段。本文将详细总结目标检测领域的演进,涵盖传统方法、两阶段检测方法、单阶段检测方法和基于Transform
- YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)
@M_J_Y@
目标检测YOLO计算机视觉目标检测python
YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)各位读者麻烦给个star或者fork,求求了。YOLOV8双分支模型架构图YOLOV8多模态目标检测前言:环境配置要求1.数据集DroneVehicle数据集(可见光+热红外)2.数据集文件格式(labeles:YOLO格式)3.权重文件下载4.配置模型yaml文件和数据集yaml文件5.训练6.测试7.打印模型信息8.o
- Java进阶——常用类及常用方法详解
1加1等于
Javajava
本文将深入探讨Java常用类的核心知识点以及在日常工作中的使用场景。本文目录一、String类1.不可变性2.字符串常量池3.比较字符串二、日期时间常用类1.Java8引入2.时间计算三、Math数值处理四、Optional空值处理五、异常处理类六、枚举类一、String类1.不可变性String类是不可变的,这意味着一旦创建就不能被修改。在进行字符串拼接时,需要注意性能问题。//不推荐:会创建多
- 【星闪开发连载】WS63E模块的雷达功能浅析
神一样的老师
星闪技术OpenHarmony物联网
目录引言功能简介程序分析操作步骤简单测试结语引言WS63E星闪模块有个特色功能就是雷达运动感知,检测物体是否有运动,作用距离不超过6米。hi3863芯片本身不带雷达功能,是模块提供的相关功能。海思还有个WS63星闪模块,没有雷达感知能力。功能简介从开发板的图片上可以看到,右下角有个安装雷达天线的地方,使用使用1代IPEX接口。润和的套件里面没有带天线,从我的测试看没有天线,其实雷达功能是不正常的。
- Angular中`trackBy`函数的独特性与性能优化
t0_54program
编程问题解决手册angular.js前端javascript个人开发
在Angular项目中,优化性能是每一个开发者都需要考虑的问题。特别是在处理大数据量或动态变化的列表时,Angular的trackBy函数成为了我们手中的利器。然而,当我们面对多个列表使用相同trackBy函数时,可能会产生一些疑问:如果这些列表中的项有相同的ID,是否会影响Angular的变更检测?本文将详细探讨trackBy函数在这种情境下的表现及其带来的性能优化。trackBy函数简介tra
- Java高频面试之集合-07
牛马baby
java面试开发语言
hello啊,各位观众姥爷们!!!本baby今天来报道了!哈哈哈哈哈嗝面试官:ArrayList和Vector的区别是什么?ArrayList与Vector的区别详解ArrayList和Vector都是Java中基于动态数组实现的List接口的实现类,但它们在设计、性能和线程安全性上有显著差异。以下是两者的核心区别:1.线程安全性特性ArrayListVector线程安全非线程安全(方法未同步)线
- 基于NanoDet的无人机交通违规监控系统设计与实现
深度学习&目标检测实战项目
NanoDet无人机目标检测人工智能计算机视觉深度学习
1.引言随着无人机技术的发展,无人机在交通监控领域的应用逐渐增多。无人机能够提供空中视角,具有更高的视野覆盖范围,能够帮助交通管理部门实时监控交通违规行为。本博客将介绍如何使用NanoDet模型实现无人机交通违规监控系统,并结合PyQt5设计一个UI界面来实时展示检测结果。通过该系统,能够检测交通违规行为并做出实时预警,确保交通安全。本博客详细介绍了数据集的构建、模型的训练与推理、碰撞检测算法的实
- npm错误 gyp错误 vs版本不对 msvs_version不兼容
澎湖Java架构师
前端htmlnpmnode.js前端
npm错误gyp错误vs版本不对msvs_version不兼容windowsSDK报错执行更新GYP语句第一种方案第二种方案执行更新GYP语句npminstall-gnode-gyp最新的GYP好像已经不支持Python2.7版本,npm会提示你更新都3.*.*版本安装Node.js的时候一定要勾选以下这个,会自动检测安装缺少的环境第一种方案管理员运行CMD(PowerShell也行)执行更新工具
- 大屏自适应终极方案:基于比例缩放的完美适配实践(Vue3版)
FFF-X
html5javascript
需求背景在数据可视化大屏开发中,我们常面临这样的挑战:如何让1920*1080的设计稿在不同分辨率设备上完美呈现?传统的响应式布局难以应对复杂的大屏元素排布,本文介绍一种基于CSS3变换的终极适配方案实现思路本方案的核心是动态比例缩放,通过以下关键步骤实现:基准比例锁定:基于设计稿宽高比(16:9)建立基准比例视口实时检测:通过resize事件监听窗口变化智能比例判断:当视口更宽时:保持高度基准,
- 如何实现具备自动重连与心跳检测的WebSocket客户端
FFF-X
websocket网络协议网络
本文介绍如何通过原生WebSocketAPI封装一个具备自动重连、心跳检测、错误恢复等能力的稳健客户端。适用于需要长连接的实时通讯场景(如聊天室、实时数据监控等)。核心功能亮点自动重连机制-指数退避策略重连心跳保活-双向检测连接活性消息可靠性-失败消息自动重发异常处理-错误分类处理机制状态管理-精准控制连接生命周期关键优化点说明事件监听优化改用addEventListener替代onopen等属性
- RocketMQ学习-Springboot整合RocketMQ
wechatt_fee1024
面试mavenspringbootjava
SpringBoot整合RocketMQ需要注意的是SpringBoot的starter集成包时,要注意版本。因为SpringBoot集成的RocketMQ的starter依赖由Spring社区提供,迭代比较快,版本之间的差异还是比较大的。可能版本不同,就导致使用的时候出现错误。maven依赖,直接把我的maven工程的配置放到这里了。普通消息maven工程创建我直接创建了一个空的maven工程,
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 中国大陆网站用了lightHouse之后还有必要用WebPageTest么?
混血哲谈
网络
对于中国大陆的网站,即使已使用Lighthouse进行性能优化,WebPageTest仍有不可替代的价值。两者并非互斥,而是互补工具,适用于不同维度的性能分析。以下是具体原因和场景说明:一、核心结论:Lighthouse与WebPageTest的定位差异工具核心价值适用场景中国大陆场景的局限性Lighthouse提供代码级优化建议(如压缩资源、渲染阻塞修复)本地开发调试、快速生成优化清单仅反映本地
- OpenStack阶梯计价实战:Hashmap模块从入门到精准计费
冯·诺依曼的
openstack云计算linux
目录Hashmap模块概述核心概念解析配置步骤详解应用场景分析注意事项与扩展1.Hashmap模块概述OpenStack的Rating模块负责资源使用量的计费统计,而Hashmap是其核心组件,用于定义灵活的计价规则。通过Hashmap,管理员可以:根据资源类型(如CPU、存储、网络)设置差异化单价实现阶梯计价(如使用量超过阈值后单价打折)将资源与服务、服务组绑定,支持复杂计费策略2.核心概念解析
- 使用AIOps进行更好的事件管理
茵赛飞3D CAD数据转换软件
pagerdutydevops人工智能运维
DevOps为科技界带来了更加协作和高效的工作流程。随着AIOps的集成,自动化更进一步,使用人工智能为团队提供更快的根本原因分析和算法降噪。主要从采用AIOps中受益的主要领域之一是事件管理。AIOps可以帮助DevOps团队自动化工作流程,以实现更智能、更高效的事件管理,从而腾出时间让IT运营团队成员专注于创新以改善用户体验。在本文中,我们将了解AIOps如何从检测和识别到响应改进事件管理,以
- React Native 迁移的阵痛
Ethan. L
ReactNative&JSreactnativereact.jsandroidios
背景由于我们的移动应用程序已经存在多年,经历了许多开发者的更替,因此变得越来越臃肿和难以维护。此外,我们团队中的Android开发人员一直很短缺,这导致我们在两个平台上的开发进度和质量存在巨大差异。因此,我们决定采用ReactNative技术,将原生工程迁移到该平台上,以提高应用程序的可维护性和整体性能。我在《ReactNative技术选型分析》中,阐述了对现有原生工程集成ReactNative的
- 【Python Qt 基本概念】深入探讨 PySide6 与 PyQt6:选择、共存与最佳实践
泡沫o0
Qt应用开发-探索Qt的魅力与实践Python基础教程mfcc++qt开发语言python嵌入式linux
目录标题第一章:Python绑定的Qt库——PySide6与PyQt6的比较1.1PySide6与PyQt6的基本介绍1.1.1PySide6:Qt官方推荐的Python绑定1.1.2PyQt6:成熟的第三方Python绑定1.1.3主要差异:许可证1.2两者的相似性与差异性1.2.1功能和性能差异1.2.2API差异与兼容性1.3总结:选择的自由与责任第二章:在VSCode中使用PySide6与
- 第十七章:Future Directions_《C++ Templates》notes
郭涤生
c/c++c++开发语言笔记
FutureDirections核心重难点:示例代码:设计题多选题答案设计题详解核心重难点:泛型非类型模板参数允许任意类型作为非类型模板参数(如template)需解决类型推导和链接问题编译期控制流constexprif替代模板偏特化(减少代码膨胀)折叠表达式优化可变参数模板处理反射与元编程增强类型检查(is_convertible_v等)反射提案(如成员变量/函数查询)模块化支持解决传统头文件包
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不