给出的迷宫如下(可自行更改)
可用两种方法实现1.栈2.队列
用栈只能找到路但路不是最简的最简的要用队列实现
记得要给迷宫加个边防止访问越界
//用栈求解迷宫问题
#include
#include
#define MaxSize 100
#define M 8
#define N 8
int mg[M+2][N+2]=
{
{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
//---------------------------------------------------------
//--迷宫栈基本运算---------------------------------------
//---------------------------------------------------------
typedef struct
{
int i; //当前方块的行号
int j; //当前方块的列号
int di; //di是下一可走相邻方位的方位号
} Box;
typedef struct
{
Box data[MaxSize]; //存放方块
int top; //栈顶指针
} StType; //定义栈类型
void InitStack(StType *&s) //初始化栈
{ s=(StType *)malloc(sizeof(StType));
s->top=-1;
}
void DestroyStack(StType *&s) //销毁栈
{
free(s);
}
bool StackEmpty(StType *s) //判断栈是否为空
{
return(s->top==-1);
}
bool Push(StType *&s,Box e) //进栈元素e
{
if (s->top==MaxSize-1)
return false;
s->top++;
s->data[s->top]=e;
return true;
}
bool Pop(StType *&s,Box &e) //出栈元素e
{
if (s->top==-1)
return false;
e=s->data[s->top];
s->top--;
return true;
}
bool GetTop(StType *s,Box &e) //取栈顶元素e
{
if (s->top==-1)
return false;
e=s->data[s->top];
return true;
}
//---------------------------------------------------------
bool mgpath(int xi,int yi,int xe,int ye) //求解路径为:(xi,yi)->(xe,ye)
{
Box path[MaxSize], e;
int i,j,di,i1,j1,k;
bool find;
StType *st; //定义栈st
InitStack(st); //初始化栈顶指针
e.i=xi; e.j=yi; e.di=-1; //设置e为入口
Push(st,e); //方块e进栈
mg[xi][yi]=-1; //入口的迷宫值置为-1避免重复走到该方块
while (!StackEmpty(st)) //栈不空时循环
{
GetTop(st,e); //取栈顶方块e
i=e.i; j=e.j; di=e.di;
if (i==xe && j==ye) //找到了出口,输出该路径
{
printf("一条迷宫路径如下:\n");
k=0; //累计路径中的方块个数
while (!StackEmpty(st))
{
Pop(st,e); //出栈方块e
path[k++]=e; //将e添加到path数组中
}
while (k>0)
{
printf("\t(%d,%d)",path[k-1].i,path[k-1].j);
if ((k+1)%5==0) //每输出每5个方块后换一行
printf("\n");
k--;
}
printf("\n");
DestroyStack(st); //销毁栈
return true; //输出一条迷宫路径后返回true
}
find=false;//最难想到的一步
while (di<4 && !find) //找相邻可走方块(i1,j1)
{
di++;
switch(di)
{
case 0:i1=i-1; j1=j; break;
case 1:i1=i; j1=j+1; break;
case 2:i1=i+1; j1=j; break;
case 3:i1=i; j1=j-1; break;
}
if (mg[i1][j1]==0) find=true; //找到一个相邻可走方块,设置find我真
}
if (find) //找到了一个相邻可走方块(i1,j1)
{
st->data[st->top].di=di; //修改原栈顶元素的di值
e.i=i1; e.j=j1; e.di=-1;
Push(st,e); //相邻可走方块e进栈
mg[i1][j1]=-1; //(i1,j1)的迷宫值置为-1避免重复走到该方块
}
else //没有路径可走,则退栈
{
Pop(st,e); //将栈顶方块退栈
mg[e.i][e.j]=0; //让退栈方块的位置变为其他路径可走方块
}
}
DestroyStack(st); //销毁栈
return false; //表示没有可走路径,返回false
}
int main()
{
mgpath(1,1,M,N);
return 1;
}
#define _CRT_SECURE_NO_WARNINGS 1
//顺序栈
#include
#include
#include
#define M 8
#define N 8
int mg[M + 2][N + 2] =
{
{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
typedef struct
{
int i;
int j;
int di;
}Box;
typedef Box ElemType;
typedef struct
{
ElemType data[100];
int top;
}SqStack;
SqStack* InitStack()
{
SqStack* s = (SqStack*)malloc(sizeof(SqStack));
s->top = -1;
return s;
}
void DestroyStack(SqStack* s)
{
free(s);
}
bool StackEmpty(SqStack* s)
{
return (s->top == -1);
}
bool Push(SqStack* s, ElemType e)
{
if (s->top == 100 - 1)
return false;
s->top++;
s->data[s->top] = e;
return true;
}
bool Pop(SqStack* s, ElemType* e)
{
if (s->top == -1) return false;
*e = s->data[s->top];
s->top--;
return true;
}
bool GetTop(SqStack* s, ElemType* e)
{
if (s->top == -1) return false;
*e = s->data[s->top];
return true;
}
bool mgpath(int xi, int yi, int xe, int ye)
{
SqStack* st = InitStack();
Box path[100];
Box e;
Box* p = &e;
e.i = xi, e.j = yi, e.di = -1;
Push(st, *p);
mg [xi][yi] = -1;
int i, j;//存储当前的坐标
int k = 0;
int di = -1;
int ix=0, jy=0;
bool find=false;
while (!StackEmpty(st))
{
GetTop(st, p);
i = p->i, j = p->j;
di = p->di;
if (i == xe && j == ye)
{
printf("路线为\n");
while (!StackEmpty(st))
{
Pop(st, p);
path[k++] = *p;
}
while (k > 0)
{
printf("(%d,%d) ", path[k - 1].i, path[k - 1].j);
k--;
if ((k+2) % 5 == 0) printf("\n");
}
DestroyStack(st);
return true;
}
find = false;
while (di < 4&&!find)
{
di++;
switch (di)
{
case 0:
{
ix = i - 1, jy = j;
break;
}
case 1:
{
ix = i, jy = j + 1;
break;
}
case 2:
{
ix = i + 1, jy = j;
break;
}
case 3:
{
ix = i, jy = j - 1;
break;
}
}
if (mg[ix][jy] == 0) find = true;
}
if (find)
{
e.i = ix, e.j = jy, e.di = -1;
st->data[st->top].di = di;
Push(st, *p);
mg[ix][jy] = -1;
}
else
{
Pop(st, p);
mg[p->i][p->j] = 0;
}
}
DestroyStack(st);
return false;
}
int main()
{
if (!mgpath(1, 1, M, N))
printf("无解\n");
return 0;
}
//用队列求解迷宫问题
#include
#include
#define MaxSize 100
#define M 8
#define N 8
int mg[M+2][N+2]=
{
{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
//----------------------------------------------------------
//-非环形队列的基本运算算法---------------------------------
//----------------------------------------------------------
typedef struct
{ int i,j; //方块的位置
int pre; //本路径中上一方块在队列中的下标
} Box; //方块类型
typedef struct
{
Box data[MaxSize];
int front,rear; //队头指针和队尾指针
} QuType; //顺序队类型
void InitQueue(QuType *&q) //初始化队列
{ q=(QuType *)malloc (sizeof(QuType));
q->front=q->rear=-1;
}
void DestroyQueue(QuType *&q) //销毁队列
{
free(q);
}
bool QueueEmpty(QuType *q) //判断队列是否为空
{
return(q->front==q->rear);
}
bool enQueue(QuType *&q,Box e) //进队列
{ if (q->rear==MaxSize-1) //队满上溢出
return false; //返回假
q->rear++; //队尾增1
q->data[q->rear]=e; //rear位置插入元素e
return true; //返回真
}
bool deQueue(QuType *&q,Box &e) //出队列
{ if (q->front==q->rear) //队空下溢出
return false;
q->front++;
e=q->data[q->front];
return true;
}
//----------------------------------------------------------
void dispapath(QuType *qu,int front) //从队列qu找到一条迷宫路径并输出
{
Box path[MaxSize];
int p=front,k=0,i;
while(p!=-1) //搜索反向路径path[0..k-1]
{
path[k++]=qu->data[p];
p=qu->data[p].pre;
}
printf("一条迷宫路径如下:\n");
for(i=k-1;i>=0;i--) //反向输出path构成正向路径
{
printf("\t(%d,%d)",path[i].i,path[i].j);
if ((k-i)%5==0) printf("\n"); //每输出每5个方块后换一行
}
printf("\n");
}
bool mgpath1(int xi,int yi,int xe,int ye) //搜索路径为:(xi,yi)->(xe,ye)
{
Box e;
int i,j,di,i1,j1;
QuType *qu; //定义顺序队指针qu
InitQueue(qu); //初始化队列qu
e.i=xi; e.j=yi; e.pre=-1;
enQueue(qu,e); //(xi,yi)进队
mg[xi][yi]=-1; //将其赋值-1,以避免回过来重复搜索
while (!QueueEmpty(qu)) //队不空且循环
{
deQueue(qu,e); //出队方块e,非环形队列中元素e仍在队列中
i=e.i; j=e.j;
if (i==xe && j==ye) //找到了出口,输出路径
{
dispapath(qu,qu->front); //调用dispapath函数输出路径
DestroyQueue(qu); //销毁队列
return true; //找到一条路径时返回真
}
for (di=0;di<4;di++) //循环扫描每个方位,把每个可走的方块插入队列中
{
switch(di)
{
case 0:i1=i-1; j1=j; break;
case 1:i1=i; j1=j+1; break;
case 2:i1=i+1; j1=j; break;
case 3:i1=i; j1=j-1; break;
}
if (mg[i1][j1]==0)
{
e.i=i1; e.j=j1;
e.pre=qu->front; //指向路径中上一个方块的下标
enQueue(qu,e); //(i1,j1)方块进队
mg[i1][j1]=-1; //将其赋值-1,以避免回过来重复搜索
}
}
}
DestroyQueue(qu); //销毁队列
return false; //未找到任何路径时返回假
}
int main()
{
mgpath1(1,1,M,N);
return 1;
}
#define _crt_secure_no_warnings 1
#include
#include
#include
//求解迷宫问题
#define m 8
#define n 8
#define maxsize 2000
int ma[m+2][n+2] = {
{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
typedef struct
{
int i, j;//当前坐标
int pre;//前一个步在队列中的下标
int di;
}box;//每一个结点的数据
typedef struct
{
box data[maxsize];
int front, rear;
}sqqueue;
sqqueue* initqueue()
{
sqqueue* s = (sqqueue*)malloc(sizeof(sqqueue));
s->front = s->rear = -1;
return;
}
bool enqueue(sqqueue* s, box e)
{
if (s->rear == maxsize - 1) return false;
s->rear++;
s->data[s->rear] = e;
return true;
}
bool queueempty(sqqueue* s)
{
return (s->front == s->rear);
}
bool dequeue(sqqueue* s, box* e)
{
if (s->front == s->rear) return false;
s->front++;
*e = s->data[s->front];
return true;
}
void destroyqueue(sqqueue* s)
{
free(s);
}
bool mgpath(int xi, int yi, int xe, int ye)
{
void print(sqqueue * s, int front);
int front;
sqqueue* s = initqueue();
box* e = (box*)malloc(sizeof(box));
int i=0, j=0, di=-1;
e->i = xi, e->j = yi, e->di = -1,e->pre = -1;
int i1=0, j1=0;
enqueue(s,*e);
ma[xi][yi] = -1;
while (!queueempty(s))
{
dequeue(s, e);
i = e->i, j = e->j;
di = e->di;
if (i == xe && j == ye)
{
printf("迷宫路径如下:\n");
print(s,s->front);
return true;
}
while (di < 3)
{
di++;
switch (di)
{
case 0:i1 = i - 1; j1 = j; break;
case 1:i1 = i; j1 = j + 1; break;
case 2:i1 = i + 1; j1 = j; break;
case 3:i1 = i; j1 = j - 1; break;
}
if (!ma[i1][j1])
{
e->i = i1, e->j = j1, e->di =-1, e->pre = s->front;
enqueue(s, *e);
ma[i1][j1] = -1;
}
}
}
destroyqueue(s);
return false;
}
void print(sqqueue* s,int front)
{
box path[maxsize];
int p = front, k = 0;
int i;
while (p != -1)
{
path[k++] = s->data[p];
p = s->data[p].pre;
}
for (i = k - 1; i >= 0; i--)
{
printf("\t(%d,%d) ", path[i].i, path[i].j);
if ((k - i) % 5 == 0) printf("\n");
}
printf("\n");
}
int main()
{
if (!mgpath(1, 1, 8, 8)) printf("此迷宫无解\n");
return 0;
}
总结此题利用队列和栈的特点来解决,需要对栈和队列有一定的理解,如果还没学到栈和队列的话建议学完再完成。
最后给(本蒟蒻)点个赞哒