- 算力租赁:人工智能时代的“水电煤”革命——以NVIDIA 4090为例解读下一代算力解决方案
算法工程gpu
引言:当AI算力需求遇上“算力饥渴症”2023年,ChatGPT仅用2个月突破1亿用户,StableDiffusion让普通人秒变艺术家,但背后是单次训练消耗超10万GB内存、千亿级参数的恐怖算力需求。当全球AI企业陷入“算力饥渴症”时,一种名为算力租赁的创新模式正以每年37%的增速(MarketsandMarkets数据)重塑行业格局。本文将深度解析这一革命性服务,并聚焦搭载NVIDIARTX4
- 英伟达开源超强模型Nemotron-70B;OpenAI推出Windows版ChatGPT桌面客户端
go2coding
AI日报chatgpt
AI新闻英伟达开源超强模型Nemotron-70B摘要:英伟达近日开源了新型AI模型Nemotron-70B,迅速超越GPT-4o和Claude3.5Sonnet,成为AI社区的新宠。该模型在多项基准测试中表现优异,采用混合训练方法和人类反馈强化学习,模型权重已在HuggingFace发布。Niemotron-70B的开发基于Llama-3.1,且开源数据集加强其训练效果。分析指出,英伟达的策略是
- React Native:跨平台移动应用开发的强大框架
冬冬小圆帽
reactnativereact.jsjavascript
ReactNative介绍ReactNative是由Facebook开发并开源的一款基于JavaScript和React的跨平台移动应用开发框架。它允许开发者使用React的语法和组件模型来构建原生移动应用(iOS和Android)。ReactNative的核心思想是“LearnOnce,WriteAnywhere”,即学习一次,编写多端应用。1.核心特点跨平台开发:使用JavaScript和Re
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- 大模型实战—你的个人AI数字大脑Khoj
不二人生
大模型人工智能大模型
Khoj是你的开源个人AI伴侣,提供即时答案。Khoj轻松地深入知识,简化复杂信息,整合你的个人背景,并根据你的独特需求量身定制响应。在线问题:如果你有一个问题需要从互联网获取最新的信息,Khoj可以进行在线搜索,找到相关答案。例如,查询当前的天气情况或某个新闻事件的最新动态。本地笔记和文档:如果你有很多保存的笔记、PDF文件、Markdown文档、GitHub仓库或Notion文件,Khoj可以
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
鸡腿爱学习
人工智能学习自然语言处理服务器数据库
大家好,我是JackBytes,一个专注于将人工智能应用于日常生活的半吊子程序猿,平时主要分享AI、NAS、Docker、搞机技巧、开源项目等。在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进
- 【监控系列】open-falcon
yunqi1215
Monitor自动化
Open-Falcon是一款由小米开源的分布式监控系统,具备高性能、高可用性和易扩展的特点。以下从多个维度对其进行详细解析:1.核心特点分布式架构:模块化设计,各组件独立部署,支持水平扩展。高性能:单实例可处理百万级监控指标,采用RPC通信和数据分片优化。灵活的数据模型:支持Tag(标签)标记数据,便于多维查询。实时告警:支持多条件策略、表达式告警及依赖管理。可视化:提供Dashboard和图表,
- 使用 Docker 部署 Puter 云桌面系统
Jaxx.Wang
#开源项目Docker
1)Puter介绍:::infoGitHub:https://github.com/HeyPuter/puter:::Puter是一个先进的开源桌面环境,运行在浏览器中,旨在具备丰富的功能、异常快速和高度可扩展性。它可以用于构建远程桌面环境,也可以作为云存储服务、远程服务器、Web托管平台等的界面。Puter是一个隐私至上的个人云,可以将您的所有文件、应用程序和游戏保存在一个安全的地方,随时随地都
- Elasticsearch 搜索引擎原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介Elasticsearch是开源分布式搜索引擎,提供搜素、分析、数据可视化等功能。它是一个基于Lucene的全文搜索服务器,能够把结构化或非结构化的数据经过索引生成一个索引库,使其可以被搜索到。在现代Web应用中,搜索功能已经成为不可或缺的一项功能。但是传统上,传统搜索方式需要依赖于数据库查询或者其他复杂的查询接口。而Elasticsearch提供了一种高效、稳
- Docker搭建开源Web云桌面操作系统Puter和DaedalOS
没刮胡子
Linux服务器技术Linux1024程序员节puter云桌面云桌面操作系统daedalOSweb操作系统
文章目录Puter操作系统说明基于Docker启动Puter操作系统拉取镜像运行容器基于Docker-Compose启动Puter操作系统创建目录编写docker-compose.yml运行在本地直接运行puter操作系统puter界面截图puter个人使用总结构建自己的Puter镜像daedalos基于web的操作系统说明技术特点核心功能使用场景基于docker运行daedalos拉取镜像运行容
- 分享:Javascript开源桌面环境-Puter
ac-er8888
javascript开发语言ecmascript
Puter这是一个运行在浏览器里的桌面操作系统,提供了笔记本、代码编辑器、终端、画图、相机、录音等应用和一些小游戏。该项目作者出于性能方面的考虑没有选择Vue和React技术栈,而是采用的JavaScript和jQuery构建,支持Docker一键部署和在线使用。简介:Puter是一个先进的开源项目,旨在为用户提供全新的云端体验。它可以在浏览器中运行,无需安装,即可提供丰富的功能和极快的速度。功能
- 开源项目常见问题解决方案——cryptography
周屹隽
开源项目常见问题解决方案——cryptographycryptographycryptographyisapackagedesignedtoexposecryptographicprimitivesandrecipestoPythondevelopers.项目地址:https://gitcode.com/gh_mirrors/cr/cryptography项目基础介绍cryptography是一个
- R.E.D.算法:革新文本分类的半监督学习新范式
真智AI
算法r语言分类人工智能学习
随着大型语言模型(LLMs)在解决问题方面的应用进入新时代,只有少数问题仍然存在不尽如人意的解决方案。大多数分类问题(在概念验证层面)可以通过良好的提示工程技术和自适应的上下文学习(ICL)示例,利用LLMs以70-90%的精确度/F1分数来解决。当您希望持续实现高于此水平的性能时——当提示工程不再足够时,会发生什么?分类难题文本分类是监督学习中最古老且最易理解的示例之一。鉴于这一前提,构建能够处
- 国内外的网络安全成难题,IPLOOK 2022年用产品筑起“护城墙”
爱浦路 IPLOOK
网络安全安全架构
《爱尔兰时报》和爱尔兰国家广播电台(RTE)于12月31日对2021年爱尔兰科技行业的赢家和弱点进行了年终盘点。双方纷纷表示,2021年爱尔兰科技行业最大的弱点是爱尔兰的网络安全,这一年是一场前所未有的灾难。随着人工智能、大数据、5G等新兴技术的发展,企业面临的威胁日益增加,信息安全的重要性变得越来越突显。现在我们把视线从爱尔兰的网络安全问题拉回到国内的网络安全现状。我国对网络安全问题保持时刻警惕
- 【Python系列】高效Parquet数据处理策略:合并与分析实践
小团团0
python开发语言
在大数据时代,数据的存储、处理和分析变得尤为重要。Parquet作为一种高效的列存储格式,被广泛应用于大数据处理框架中,如ApacheSpark、ApacheHive等。Parquet是一个开源的列存储格式,它被设计用于支持复杂的嵌套数据结构,同时提供高效的压缩和编码方案,以优化存储空间和查询性能。以下将详细介绍如何使用Python对Parquet文件进行数据处理与合并,并提供相应的源码示例。一、
- 文档处理控件Aspose.Words 教程:.NET版中增强的 AI 文档摘要功能
CodeCraft Studio
控件文档管理人工智能excelwordpdf
Aspose.Words是一个功能强大的Word文档处理库。它可以帮助开发人员自动编辑、转换和处理文档。自24.11版以来,Aspose.Wordsfor.NET提供了AI驱动的文档摘要功能,使用户能够从冗长的文本中快速提取关键见解。在25.2版中,我们通过使用Anthropic生成语言模型进行摘要扩展了此功能。本篇内容将对此做讨论的。Aspose.wordsfor.Net最新版下载文档摘要有何新
- 大模型提示词工程师的自我修养-应用二(RAG数据合成与数据多样性问题的解决) -(专题4)
AI专题精讲
大模型专题系列人工智能
1.生成数据大型语言模型(LLMs)具有生成连贯文本的强大能力。通过有效的提示策略,可以引导模型生成更好、一致且更有事实依据的响应。LLMs也特别适用于生成数据,这对于进行各种实验和评估非常有用。例如,我们可以用它来为情感分类器生成快速样本,如下所示:提示词生成10个情感分析的示例。示例分为正面或负面类别。生成2个负面示例和8个正面示例。示例如下格式:Q:A:输出Q:我刚刚得到了最棒的消息!A:正
- 开源前端埋点监控插件Web-Tracing
研创通之逍遥峰
开源工具开源前端
Web-Tracing是一款专为前端项目设计的前端监控插件,它基于JavaScript设计,兼容跨平台使用,并提供了全方位的监控功能。开源地址:https://gitee.com/junluoyu/web-tracing-analysis以下是关于Web-Tracing的详细介绍:一、主要功能Web-Tracing涵盖了多个领域的监控手段,包括但不限于:埋点:通过事件监听,实现对用户交互行为的精准
- 探索NebulaGraph:一个开源分布式图数据库的技术解析
一休哥助手
数据库分布式系统开源分布式数据库
1.介绍NebulaGraph的定位和用途NebulaGraph是一款开源的分布式图数据库,专注于存储和处理大规模图数据。它的主要定位是为了解决图数据存储和分析的问题,能够处理节点和边数量巨大、结构复杂的图结构数据。NebulaGraph被设计用来应对各种领域的图数据挑战,包括社交网络分析、推荐系统、网络安全监测等。无论是从数据量还是计算复杂度上,NebulaGraph都能够应对各种挑战,为用户提
- OpenSSH详解:构建安全远程管理的核心技术
ScilogyHunter
常见软件库安全OpenSSH
OpenSSH详解:构建安全远程管理的核心技术引言在数字化时代,远程管理服务器和数据传输的安全性至关重要。OpenSSH(OpenSecureShell)作为SSH协议的开源实现,通过加密通信、身份验证和数据完整性保护,彻底解决了传统工具(如Telnet、FTP)的明文传输风险。本文将从核心原理、配置实践到高级功能,全面解析OpenSSH的技术细节与应用场景。一、OpenSSH的核心架构与工作原理
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- 股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?
云策量化
量化交易量化软件量化炒股量化炒股QMT量化交易入门教程PTrade股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》标题:股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?正文:在金融投资的世界里,量化投资以其科学、系统和客观的特点,成为了众多投资者追求的“圣杯”。而在量化投资领域,蒋菲以其独特的大数据量化投资模型而闻名。本文将深入探讨蒋菲如何利用大数据优化其量化投资模型,以及她的数据来源有哪些。一、量化投资模型的优化
- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- Github一周热门ai项目 25.3.24
BillyXie23
AI探索aigithub人工智能AI编程开源
项目1:Significant-Gravitas/AutoGPT地址:https://github.com/Significant-Gravitas/AutoGPT描述:AutoGPT致力于让AI技术触手可及,为每个人提供构建AI的工具。Stars:173,711推荐理由:AutoGPT是开源AI领域的标杆项目,强调“人人可用AI”的愿景。它提供了一套完整的工具链,适合开发者和企业快速搭建AI应用
- 密码学,算法在人工智能的实战利用
china—hbaby
人工智能密码学
在人工智能(AI)的快速发展中,数据安全和隐私保护成为了核心议题。密码学,作为保护信息安全的基石,其在AI领域的应用显得尤为重要。本文将探讨密码学在AI中的利用,并提供一些代码示例来展示其实际应用。密码学的概述即常用加密方式密码学(Cryptography)是数学和计算机科学的一个分支,它涉及保护信息的安全性和隐私性。密码学的主要目标是确保信息在传输过程中不被未授权的第三方读取或篡改,以及确保信息
- ts之变量声明以及语法细节,ts小白初学ing
菥菥爱嘻嘻
小白学习tstypescript前端
TypeScript用js编写的项目虽然开发很快,但是维护是成本很高,而且js不报错啊啊啊啊啊!!!以js为基础进行扩展的给变量赋予了类型语法、实战(ts+vue3)TypeScript是JavaScript的一个超集,支持ECMAScript6标准(ES6教程)。TypeScript由微软开发的自由和开源的编程语言,在JavaScript的基础上增加了静态类型检查的超集。TypeScript设计
- 【人工智能时代】-人工智能发展史:1900~2023
xiaoli8748_软件开发
人工智能时代人工智能搜索引擎
第一阶段:人工智能发展历史:1900-19591909年西班牙工程师LeonardoTorresyQuevedo发明了“Occultus”,这是一个可以自动执行国际象棋对弈的机器,预示了未来的计算智能。
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- 算法每日一练 (17)
张胤尘
算法每日一练算法数据结构
欢迎来到张胤尘的技术站技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌文章目录算法每日一练(17)打家劫舍题目描述解题思路解题代码`c/c++``golang``lua`官方站点:力扣Leetcode算法每日一练(17)打家劫舍题目地址:打家劫舍题目描述你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的
- 算法每日一练 (16)
张胤尘
算法每日一练算法数据结构
欢迎来到张胤尘的技术站技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌文章目录算法每日一练(16)使用最小花费爬楼梯题目描述解题思路解题代码`c/c++``golang``lua`官方站点:力扣Leetcode算法每日一练(16)使用最小花费爬楼梯题目地址:使用最小花费爬楼梯题目描述给你一个整数数组cost,其中cost[i]是从楼梯第i个台阶向上爬需
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi