- Langflow与Dify对比:低代码LLM应用开发平台如何选择?
几道之旅
几道之旅AI专栏VVVIPDify:智能体(Agent)工作流知识库全搞定低代码
随着大语言模型(LLM)的普及,越来越多的开发者希望快速构建基于LLM的应用程序。然而,直接调用API或编写复杂代码的门槛较高,因此低代码/无代码平台成为热门选择。Langflow和Dify作为两款基于LangChain生态的工具,都致力于简化LLM应用的开发流程,但两者的定位和功能存在显著差异。本文将从核心定位、功能模块、适用场景等维度进行对比分析,帮助开发者做出选择。一、核心定位对比Langf
- 大语言模型训练数据集格式
香菜烤面包
#AI大模型语言模型人工智能深度学习
1.SFT(有监督微调)的数据集格式对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot编
- 大模型训练 && 微调数据格式
comli_cn
大模型笔记人工智能大模型
1.SFT(有监督微调)的数据集格式?对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot
- 【大模型】AI 辅助编程操作实战使用详解
陆鳐LuLu
人工智能
近年来,大型语言模型(LLM)在代码生成、代码补全和代码解释等方面展现出强大能力,成为开发者提升效率的利器。以下将详细介绍如何利用大模型进行AI辅助编程。一、选择合适的工具目前有多种AI辅助编程工具可供选择,常见的有:GitHubCopilot:由GitHub和OpenAI合作开发,支持多种编程语言,提供代码补全、函数生成等功能。AmazonCodeWhisperer:亚马逊推出的AI编程助手,支
- 在LangFlow中集成OpenAI Compatible API类型的大语言模型
几道之旅
Dify:智能体(Agent)工作流知识库全搞定几道之旅AI专栏VVVIP语言模型人工智能自然语言处理
一、背景与核心价值从Dify换到这个langflow真的时各种的不适应啊。就比如这个OpenAICompatibleAPI,这不应该是基本操作嘛?算了,服了,习惯了就好了。咱闲言少叙,正片开始:LangFlow作为LangChain的可视化开发工具,其最大优势在于无需编写代码即可构建复杂的大模型应用。随着开源生态发展,越来越多的模型服务(如Ollama、硅基流动、DeepSeek、百度千帆等)开始
- 大语言模型:从开发到运行的深度解构
nbsaas-boot
语言模型人工智能自然语言处理
一、LLM开发训练的全流程解析1.数据工程的炼金术数据采集:构建涵盖网页文本(CommonCrawl)、书籍、论文、代码等领域的超大规模语料库,典型规模可达数十TB。例如GPT-4的训练数据包含超过13万亿token数据清洗:通过质量过滤(去除低质内容)、去重(MinHash算法)、毒性检测(NSFW内容识别)等步骤构建高质量数据集数据增强:引入代码数据提升逻辑性(如GitHub代码)、多语言数据
- GPT和BERT的异同
彬彬侠
自然语言处理gptbertTransformer解码器编码器NLP自然语言处理
GPT(GenerativePre-trainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)都是基于Transformer架构的语言模型,但它们的设计理念、使用的Transformer部分、训练方式、目标任务等方面有显著的不同。以下是它们的异同点:1.基本架构与模型设计GPT:使用的Transform
- 探秘 DeepSeek-V3:低成本训练铸就的 AI 大模型传奇
道亦无名
人工智能
在人工智能大模型的激烈竞争赛道上,DeepSeek-V3宛如一匹黑马,凭借其卓越的性能和令人惊叹的低训练成本,迅速吸引了全球AI领域的目光。今天,就让我们深入剖析DeepSeek-V3,探寻其背后的故事。DeepSeek-V3:横空出世的AI新贵DeepSeek-V3是杭州深度求索人工智能基础技术研究有限公司于2024年12月26日重磅发布的混合专家(MoE)语言模型。一经推出,便在知识类任务、算
- Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
本文是LLM系列文章,针对《Xmodel-VLM:ASimpleBaselineforMultimodalVisionLanguageModel》的翻译。XmodelVLM:一种多模态视觉语言模型的简单基线摘要1引言2相关工作3模型架构4实验5消融研究6结论摘要我们介绍了XmodelVLM,一种前沿的多模态视觉语言模型。它是为在消费级GPU服务器上高效部署而设计的。我们的工作直接面对一个关键的行业
- 关于claude怎么下载?请收下这份下载指南!
claude
Claude:下一代AI助手✨Claude是Anthropic公司开发的一款大型语言模型,被誉为下一代AI助手。它拥有强大的文本处理能力,能够进行对话、写作、翻译、总结等多种任务。一、Claude的产生:Claude的诞生源于Anthropic公司对构建安全、可靠且符合人类价值观的AI系统的追求❤️。该公司由前OpenAI研究人员创立,他们致力于解决大型语言模型潜在的安全和伦理问题️。Claude
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- Grok-3:人工智能领域的新突破
大模型之路
大模型(LLM)人工智能Grok-3llm
近日,xAI公司推出的最新AI模型——Grok-3,在ChatbotArena中一举夺魁,以破纪录的1402分傲视群雄,不仅刷新了大型语言模型(LLMs)的评分上限,更标志着AI技术的一次重大飞跃。本文将深入探讨Grok-3的技术突破、命名背后的深意、对AI领域的深远影响以及xAI公司的未来展望。一、Grok-3:技术突破与命名寓意Grok-3的横空出世,无疑给AI界带来了一场地震。它不仅在Cha
- 数字人源头厂商-源码出售源码交付-OEM系统贴牌
余~~18538162800
音视频线性代数网络人工智能
引言在数字化浪潮中,数字人正成为创新应用的焦点。从虚拟偶像活跃于舞台,到虚拟客服在各行业的普及,数字人展现出巨大的潜力。搭建数字人源码系统,是融合多领域前沿技术的复杂工程,涵盖图形学、人工智能、语音处理等。本文将深入剖析数字人源码搭建的技术开发细节,为开发者提供全面且深入的技术指南。技术体系架构感知层语音识别:技术选型:采用Kaldi语音识别框架,它是一个开源且灵活的工具包,支持多种语言和声学模型
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- 使用 ChatGPT 构建 YouTube 下载器的分步指南
pxr007
chatgptpython开发语言
让我们使用ChatGPT的代码生成功能在Python中生成功能齐全的YouTube下载器应用程序,而无需自己编写一行代码!不相信这是可能的?只需按照本教程中的步骤操作......ChatGPT是OpenAI训练的大型语言模型,可以根据自然语言输入生成代码。如何安装PC机箱风扇这意味着您可以用简单的英语描述您想要实现的目标,ChatGPT将为您生成代码。在本教程中,我们将使用ChatGPT的此功能为
- 微服务即时通信系统---(一)项目介绍
YangZ123123
微服务即时通信系统微服务运维架构
目录框架与微服务拆分设计微服务架构设计思想入口网关子服务HTTP通信WEBSOCKET通信用户管理子服务好友管理子服务文件管理子服务消息存储子服务消息转发子服务语音识别子服务项目所使用到的技术栈/框架/库后台技术框架图整体框架服务器层次图本项目基于微信app模拟实现一个简易通信聊天系统。框架与微服务拆分设计本项目在设计之初,采用微服务框架设计。指将一个大的业务拆分为多个子业务,分别在多台不同的节点
- 科普:大模型使用中的temperature 与 top-k及其它
人工干智能
大模型编程人工智能大模型
在大语言模型(如通过Ollama运行的llama2模型)中,temperature和top-k是两个用于控制文本生成过程的重要参数,它们在功能上相互独立,但又共同影响着模型生成文本的随机性和多样性。一、各自的作用temperature:该参数主要用于控制生成文本的随机性。它会对模型预测的词概率分布进行调整。具体来说,temperature值越高,概率分布就越平滑,各个词被选中的概率就越接近,生成文
- DeepSeek新作-Native Sparse Attention
数据分析能量站
机器学习人工智能
NSA概述长文本建模的重要性与挑战长文本建模的重要性:长文本建模对于下一代语言模型至关重要。这意味着模型需要能够处理和理解长篇幅的文本内容,例如长篇文章、书籍、复杂的对话等,这对于语言模型的推理、生成和理解能力提出了更高的要求。标准注意力机制的挑战:传统的注意力机制(如Transformer中的全注意力机制)在处理长文本时面临巨大的计算成本。这是因为全注意力机制需要计算每个词与其他所有词之间的关系
- Github 2024-04-29 开源项目周报 Top15
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本周(2024-04-29统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目11TypeScript项目3Go项目1Svelte项目1JupyterNotebook项目1Swift项目1Ollama:本地大型语言模型设置与运行创建周期:248天开发语言:Go协议类型:MITLicenseStar数量:4242
- 用示例提升大语言模型的查询分析能力!
llzwxh888
语言模型windows人工智能python
引言随着查询分析的复杂性增加,大语言模型(LLM)在理解如何响应某些场景时可能会面临挑战。为了提高性能,我们可以在提示中添加示例,以便更好地引导模型。本文将详细介绍如何为我们在Quickstart中构建的LangChainYouTube视频查询分析器添加示例,以优化其响应准确性。主要内容设置环境安装依赖项我们需要安装langchain-core和langchain-openai库。#%pipins
- 如何创建自定义Retriever来增强LLM应用程序
llzwxh888
服务器运维python
引言在许多大语言模型(LLM)应用中,我们需要从外部数据源中检索信息,以便生成更准确和相关的响应。这些信息往往通过Retriever模块检索,然后用于生成提示,供LLM进行处理和响应。在这篇文章中,我们将深入探讨如何创建一个自定义Retriever,并提供代码示例来帮助你在自己的项目中实现这一功能。主要内容Retriever接口要创建一个自定义Retriever,你需要扩展BaseRetrieve
- 深入探索Mozilla的DeepSpeech:语音识别的新里程碑
温宝沫Morgan
深入探索Mozilla的DeepSpeech:语音识别的新里程碑项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeech项目简介是一个开源的语音识别引擎,基于深度学习技术,致力于提供准确、可扩展且易于集成的解决方案。该项目的目标是打破现有的语音识别壁垒,使开发者能够轻松构建支持语音的应用,推动人机交互进入新的时代。技术分析基于Baidu的DeepSpeec
- 第十节:通过Debug解析ChatGLMModel的数据流,理解视觉与语言模型结合架构
tangjunjun-owen
语言模型人工智能自然语言处理GLM-4v-9B多模态大模型教程ChatGLMModel
文章目录前言一、forward的参数解读二、图像编码token数量值方法解读三、input_ids的embedding方法解读1、embedding编码方法2、Embedding源码四、视觉编码方法解读五、inputs_embeds与position_ids编码加工方法解读1、inputs_embeds与position_ids编码方法2、图示解读编码方法3、inputs_embeds与posit
- LLM之提示词工程
樱花的浪漫
大模型与智能体人工智能自然语言处理知识图谱神经网络agent大模型
1.提示与提示工程提示工程作为一门新兴的学科,专注于开发和优化提示技术,旨在提升语言模型(LMs)在各种应用与研究主题中的效能。掌握提示工程技能对于深入理解大型语言模型(LLMs)的潜力与局限至关重要。研究人员借助提示工程,致力于增强LLM在广泛且复杂的任务(如问答系统与算术推理)中的表现。而对于开发人员而言,提示工程则成为设计高效、强大提示技术的关键,这些技术能够无缝对接LLM与其他工具,实现功
- LLaVA-CoT: Let Vision Language Models Reason Step-by-Step
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LLaVA-CoT:LetVisionLanguageModelsReasonStep-by-Step》的翻译。LLaVACoT:让视觉语言模型逐步推理摘要1引言2相关工作3提出的方法4后训练性能5推理时间缩放6最新VLMs的比较7结论摘要大型语言模型在推理能力方面取得了长足的进步,特别是通过推理时间缩放,如OpenAI的o1等模型所示。然而,当前的视觉语言模型(VLM
- 用 Python + LLM 实现一个智能对话
AGI大模型学习
python开发语言langchainprompt大模型AI大模型
大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。简介大语言模型LLM全称是LargeLanguageModels。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。所以LLM可以做以下事情:文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。智能对话系
- 大语言模型基础
MatrixSparse
大模型人工智能语言模型自然语言处理人工智能
简介AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型和多模态大模型,我将分别介绍它们的背景知识、关键技术、演进路线和挑战。什么是大语言模型大语言模型(LargeLanguageModel,LL
- 无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]1.简介MaxKB(MaxKnowledgeBase)是一款基于LLM大语言模型的开源知识库问答系统,1.1产品优势开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入:支持零编码快速嵌入到第三方业务系
- 2023-arXiv-FinGPT: 开源金融大语言模型
量仔搞靓化
金融大语言模型金融语言模型人工智能
arXiv|https://arxiv.org/abs/2306.06031GitHub|https://github.com/AI4Finance-Foundation/FinGPT&https://github.com/AI4Finance-Foundation/FinNLP摘要:大语言模型(LLMs)在多个领域展示出革新自然语言处理任务的潜力,这在金融领域引发了极大的兴趣。获取高质量的金融数
- 基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写
AAIshangyanxiu
chatgptpython机器学习深度学习
第一章2024大语言模型最新进展与ChatGPT各模型讲解1、2024AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)2、国内外大语言模型(ChatGPT4O、Gemini、Claude、Llama3、PerplexityAI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析3、OpenAI12天12场直播新功能解读与演示(ChatGPTO1
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY NODEXY@2014.8.12
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa