机器学习每日论文速递[08.01]

同步wx号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)

cs.LG 方向,今日共计47篇

[cs.LG]:

【1】 On Mutual Information Maximization for Representation Learning
标题:表征学习中的互信息最大化问题
作者: Michael Tschannen, Mario Lucic
链接:https://arxiv.org/abs/1907.13625

【2】 Privately Answering Classification Queries in the Agnostic PAC Model
标题:不可知性PAC模型中的私人应答分类查询
作者: Raef Bassily, Anupama Nandi
链接:https://arxiv.org/abs/1907.13553

【3】 Optimal Attacks on Reinforcement Learning Policies
标题:强化学习策略的最优攻击
作者: Alessio Russo, Alexandre Proutiere
链接:https://arxiv.org/abs/1907.13548

【4】 Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space
标题:基于特征空间域的机器学习局部解释方法
作者: Tiago Botari, Andre C. P. L. F. de Carvalho
链接:https://arxiv.org/abs/1907.13525

【5】 A novel framework of the fuzzy c-means distances problem based weighted distance
标题:基于加权距离的模糊c-均值距离问题的一种新框架
作者: Andy Arief Setyawan, Ahmad Ilham
备注:25 pages, 6 figure, was submitted online submission at the Applied Computing and Informatics, Elsevier, July 18, 2019. King Saud University, Riyadh, Saudi Arabia
链接:https://arxiv.org/abs/1907.13513

【6】 Graph Space Embedding
标题:图空间嵌入
作者: João Pereira, Evgeni Levin
链接:https://arxiv.org/abs/1907.13443

【7】 MineRL: A Large-Scale Dataset of Minecraft Demonstrations
标题:MineRL:一个大型的“我的世界”演示数据集
作者: William H. Guss, Ruslan Salakhutdinov
备注:Accepted at IJCAI 2019, 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1904.10079
链接:https://arxiv.org/abs/1907.13440

【8】 Neural Network based Explicit Mixture Models and Expectation-maximization based Learning
标题:基于神经网络的显式混合模型和基于期望最大化的学习
作者: Dong Liu, Lars K. Rasmussen
链接:https://arxiv.org/abs/1907.13432

【9】 Inverse Reinforcement Learning with Multiple Ranked Experts
标题:具有多个等级专家的反向强化学习
作者: Pablo Samuel Castro, Daqing Zhang
链接:https://arxiv.org/abs/1907.13411

【10】 Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning
标题:基于正交阵列调谐的深度神经网络超参数优化
作者: Xiang Zhang, Manqing Dong
链接:https://arxiv.org/abs/1907.13359

【11】 A Novel Multiple Classifier Generation and Combination Framework Based on Fuzzy Clustering and Individualized Ensemble Construction
标题:一种新的基于模糊聚类和个性化集成构造的多分类器生成与组合框架
作者: Zhen Gao, Jianhua Ruan
链接:https://arxiv.org/abs/1907.13353

【12】 A comparative study of general fuzzy min-max neural networks for pattern classification problems
标题:用于模式分类问题的一般模糊min-max神经网络的比较研究
作者: Thanh Tung Khuat, Bogdan Gabrys
备注:18 pages, 7 figures, 12 tables
链接:https://arxiv.org/abs/1907.13308

【13】 Influence Maximization with Few Simulations
标题:只需很少的模拟即可实现影响最大化
作者: Gal Sadeh, Haim Kaplan
链接:https://arxiv.org/abs/1907.13301

【14】 Are Outlier Detection Methods Resilient to Sampling?
标题:异常值检测方法对采样有弹性吗?
作者: Laure Berti-Equille, Saravanan Thirumuruganathan
备注:18 pages
链接:https://arxiv.org/abs/1907.13276

【15】 Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training
标题:面向深度学习训练的多GPU并行化策略优化
作者: Saptadeep Pal, Puneet Gupta
链接:https://arxiv.org/abs/1907.13257

【16】 A Temporal Clustering Algorithm for Achieving the trade-off between the User Experience and the Equipment Economy in the Context of IoT
标题:物联网环境下实现用户体验与设备经济性权衡的时间聚类算法
作者: Caio Ponte, Vasco Furtado
链接:https://arxiv.org/abs/1907.13246

【17】 Multi-Agent Adversarial Inverse Reinforcement Learning
标题:多智能体对抗逆强化学习
作者: Lantao Yu, Stefano Ermon
备注:ICML 2019
链接:https://arxiv.org/abs/1907.13220

【18】 Deep Learning Training on the Edge with Low-Precision Posits
标题:基于低精度假设的边缘深度学习训练
作者: Hamed F. Langroudi, Dhireesha Kudithipudi
链接:https://arxiv.org/abs/1907.13216

【19】 Wasserstein Robust Reinforcement Learning
标题:Wasserstein鲁棒强化学习
作者: Mohammed Amin Abdullah, Jun Wang
链接:https://arxiv.org/abs/1907.13196

【20】 Towards More Accurate Automatic Sleep Staging via Deep Transfer Learning
标题:通过深度转移学习实现更准确的自动睡眠分期
作者: Huy Phan, Maarten De Vos
链接:https://arxiv.org/abs/1907.13177

【21】 Disentangled Relational Representations for Explaining and Learning from Demonstration
标题:用于解释和学习演示的解缠关系表示
作者: Yordan Hristov, Subramanian Ramamoorthy
链接:https://arxiv.org/abs/1907.13627

【22】 Multi-Point Bandit Algorithms for Nonstationary Online Nonconvex Optimization
标题:非平稳在线非凸优化的多点Bandit算法
作者: Abhishek Roy, Prasant Mohapatra
链接:https://arxiv.org/abs/1907.13616

【23】 MSNM-S: An Applied Network Monitoring Tool for Anomaly Detection in Complex Networks and Systems
标题:MSNm-S:一种适用于复杂网络和系统异常检测的网络监控工具
作者: Roberto Magán-Carrión, Ángel Ruíz-Zafra
链接:https://arxiv.org/abs/1907.13612

【24】 Attention-Wrapped Hierarchical BLSTMs for DDI Extraction
标题:用于DDI抽取的关注包裹分层BLSTM
作者: Vahab Mostafapour, Oğuz Dikenelli
链接:https://arxiv.org/abs/1907.13561

【25】 Personalizing ASR for Dysarthric and Accented Speech with Limited Data
标题:在有限数据的情况下个性化用于Dysarthric和重音语音的ASR
作者: Joel Shor, Yossi Matias
链接:https://arxiv.org/abs/1907.13511

【26】 Topological Machine Learning with Persistence Indicator Functions
标题:具有持久性指标函数的拓扑机学习
作者: Bastian Rieck, Heike Leitte
备注:Topology-based Methods in Visualization 2017
链接:https://arxiv.org/abs/1907.13496

【27】 Persistent Intersection Homology for the Analysis of Discrete Data
标题:离散数据分析的持久相交同调
作者: Bastian Rieck, Heike Leitte
备注:Topology-based Methods in Visualization 2017
链接:https://arxiv.org/abs/1907.13485

【28】 Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query Complexity
标题:具有较低函数查询复杂度的非凸零阶随机ADMM方法
作者: Feihu Huang, Heng Huang
备注:29 pages, 9 figures and 2 tables. arXiv admin note: text overlap with arXiv:1905.12729
链接:https://arxiv.org/abs/1907.13463

【29】 Optimizing vaccine distribution networks in low and middle-income countries
标题:优化中低收入国家的疫苗分销网络
作者: Yuwen Yang, Jayant Rajgopal
链接:https://arxiv.org/abs/1907.13434

【30】 Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement
标题:更安全的神经图像增强的深度学习不确定性量化
作者: Ryutaro Tanno, Daniel C. Alexander
链接:https://arxiv.org/abs/1907.13418

【31】 A Leisurely Look at Versions and Variants of the Cross Validation Estimator
标题:悠闲地查看交叉验证估计器的版本和变体
作者: Waleed A. Yousef
链接:https://arxiv.org/abs/1907.13413

【32】 Embedding Human Heuristics in Machine-Learning-Enabled Probe Microscopy
标题:在机器学习使能探针显微镜中嵌入人类启发式算法
作者: O. Gordon, P. Moriarty
链接:https://arxiv.org/abs/1907.13401

【33】 Incremental Learning Techniques for Semantic Segmentation
标题:用于语义切分的增量式学习技术
作者: Umberto Michieli, Pietro Zanuttigh
链接:https://arxiv.org/abs/1907.13372

【34】 Multi-task Generative Adversarial Learning on Geometrical Shape Reconstruction from EEG Brain Signals
标题:脑电信号几何形状重建的多任务生成性对抗性学习
作者: Xiang Zhang, Lina Yao
链接:https://arxiv.org/abs/1907.13351

【35】 Competing Ratio Loss for Discriminative Multi-class Image Classification
标题:区分多类图像分类的竞争比损失
作者: Ke Zhang, Tony X. Han
链接:https://arxiv.org/abs/1907.13349

【36】 Simple Unsupervised Summarization by Contextual Matching
标题:基于上下文匹配的简单无监督摘要
作者: Jiawei Zhou, Alexander M. Rush
链接:https://arxiv.org/abs/1907.13337

【37】 Generative Adversarial Networks (GAN) for compact beam source modelling in Monte Carlo simulations
标题:蒙特卡罗模拟中用于紧凑束源建模的生成对抗性网络(GAN)
作者: David Sarrut, Jean-Michel Létang
链接:https://arxiv.org/abs/1907.13324

【38】 Robust stochastic optimization with the proximal point method
标题:基于邻近点方法的鲁棒随机优化
作者: Damek Davis, Dmitriy Drusvyatskiy
链接:https://arxiv.org/abs/1907.13307

【39】 Semi-supervised Compatibility Learning Across Categories for Clothing Matching
标题:面向服装匹配的跨类别半监督相容性学习
作者: Zekun Li, Liang Wang
备注:6 pages, 4 figures, accepted by ICME2019
链接:https://arxiv.org/abs/1907.13304

【40】 PrecoderNet: Hybrid Beamforming for Millimeter Wave Systems Using Deep Reinforcement Learning
标题:PrecderNet:使用深度强化学习的毫米波系统混合波束形成
作者: Qisheng Wang, Keming Feng
链接:https://arxiv.org/abs/1907.13266

【41】 SenseFitting: Sense Level Semantic Specialization of Word Embeddings for Word Sense Disambiguation
标题:SenseFitting:词义消歧的词义嵌入的语义特化
作者: Manuel Stoeckel, Alexander Mehler
备注:Sketch for LREC 2020 submission
链接:https://arxiv.org/abs/1907.13237

【42】 Temporal coding in spiking neural networks with alpha synaptic function
标题:具有α突触功能的尖峰神经网络中的时间编码
作者: Iulia M. Comsa, Jyrki Alakuijala
链接:https://arxiv.org/abs/1907.13223

【43】 Learning over inherently distributed data
标题:通过固有分布式数据学习
作者: Donghui Yan, Ying Xu
链接:https://arxiv.org/abs/1907.13208

【44】 Marine Mammal Species Classification using Convolutional Neural Networks and a Novel Acoustic Representation
标题:基于卷积神经网络和一种新的声学表示的海洋哺乳动物物种分类
作者: Mark Thomas, Stan Matwin
备注:16 pages, To appear in ECML-PKDD 2019
链接:https://arxiv.org/abs/1907.13188

【45】 Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation
标题:对抗性例子对生物医学图像分割深度学习模型的影响
作者: Utku Ozbulak, Wesley De Neve
备注:Accepted for the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI-19)
链接:https://arxiv.org/abs/1907.13124

【46】 Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
标题:基于收缩正则化的可稳定非线性动力学学习
作者: Sumeet Singh, Marco Pavone
备注:Invited submission for IJRR; under review. arXiv admin note: text overlap with arXiv:1808.00113
链接:https://arxiv.org/abs/1907.13122

【47】 Multi-Frame Cross-Entropy Training for Convolutional Neural Networks in Speech Recognition
标题:语音识别中卷积神经网络的多帧交叉熵训练
作者: Tom Sercu, Neil Mallinar
链接:https://arxiv.org/abs/1907.13121

翻译:腾讯翻译君

你可能感兴趣的:(机器学习每日论文速递[08.01])