在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片。本人偏爱 matpoltlib,因为它的语法更像 matlab。
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
lena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png
# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
lena.shape #(512, 512, 3)
plt.imshow(lena) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
# 显示图片的第一个通道
lena_1 = lena[:,:,0]
plt.imshow('lena_1')
plt.show()
# 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:
plt.imshow('lena_1', cmap='Greys_r')
plt.show()
img = plt.imshow('lena_1')
img.set_cmap('gray') # 'hot' 是热量图
plt.show()
matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
gray = rgb2gray(lena)
# 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))
plt.imshow(gray, cmap='Greys_r')
plt.axis('off')
plt.show()
这里要用到 scipy
from scipy import misc
lena_new_sz = misc.imresize(lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
plt.imshow(lena_new_sz)
plt.axis('off')
plt.show()
5.1 保存 matplotlib 画出的图像
该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。
'''
学习中遇到问题没人解答?小编创建了一个Python学习交流QQ群:153708845
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
plt.imshow(lena_new_sz)
plt.axis('off')
plt.savefig('lena_new_sz.png')
5.2 将 array 保存为图像
from scipy import misc
misc.imsave('lena_new_sz.png', lena_new_sz)
5.3 直接保存 array
读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失
np.save('lena_new_sz', lena_new_sz) # 会在保存的名字后面自动加上.npy
img = np.load('lena_new_sz.npy') # 读取前面保存的数组
from PIL import Image
im = Image.open('lena.png')
im.show()
im_array = np.array(im)
# 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝
直接调用 Image 类的 save 方法
from PIL import Image
I = Image.open('lena.png')
I.save('new_lena.png')
这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uinit8 型的,范围是0-255,所以要进行转换:
'''
学习中遇到问题没人解答?小编创建了一个Python学习交流QQ群:153708845
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import matplotlib.image as mpimg
from PIL import Image
lena = mpimg.imread('lena.png') # 这里读入的数据是 float32 型的,范围是0-1
im = Image.fromarray(np.uinit8(lena*255))
im.show()
from PIL import Image
I = Image.open('lena.png')
I.show()
L = I.convert('L')
L.show()