✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
图像修复是一项重要的图像处理任务,它旨在恢复受损图像的原始外观。在过去的几十年里,许多图像修复方法已经被提出,并且在各种应用中得到了广泛的应用。最近,基于字典学习方法的图像修复技术已经引起了研究人员的兴趣,因为它在恢复彩色图像方面表现出了很高的效果。
字典学习是一种用于从样本数据中学习稀疏表示的技术。在图像处理领域,字典学习方法被广泛应用于图像去噪、压缩感知和图像修复等任务中。基于字典学习的图像修复方法利用训练好的字典来表示受损图像的内容,然后通过优化算法来恢复原始图像。这种方法在处理彩色图像时特别有效,因为它可以同时考虑图像的色彩和结构信息。
基于字典学习的彩色图像修复方法通常包括以下几个步骤:首先,收集一组干净的彩色图像作为训练样本;然后,使用字典学习算法从训练样本中学习一组稀疏表示;接下来,将学习到的稀疏表示应用于受损图像,以恢复其原始内容;最后,通过优化算法来优化恢复图像的质量。这些步骤通常需要大量的计算,因此高效的算法和计算工具是实现基于字典学习的彩色图像修复的关键。
近年来,研究人员提出了许多基于字典学习的彩色图像修复方法,并取得了令人瞩目的成果。例如,一些研究者提出了基于联合稀疏表示的图像修复方法,它可以有效地利用彩色图像的结构信息来提高修复的质量。另一些研究者则提出了基于深度学习的图像修复方法,通过训练深度神经网络来学习图像的稀疏表示,从而实现更加准确和快速的图像修复。
尽管基于字典学习的彩色图像修复方法在实际应用中取得了很大的成功,但仍然存在一些挑战和问题。例如,如何选择合适的训练样本和字典表示是一个关键的问题;如何设计高效的优化算法和计算工具也是一个挑战。此外,基于字典学习的彩色图像修复方法通常需要大量的计算资源,因此如何提高算法的效率也是一个重要的课题。
总的来说,基于字典学习的彩色图像修复方法是一种非常有效的图像处理技术,它在恢复受损图像的色彩和结构信息方面表现出了很高的效果。随着深度学习和计算机视觉技术的不断发展,基于字典学习的彩色图像修复方法有望在更多的实际应用中得到广泛的应用。希望未来能够有更多的研究人员投入到这个领域,共同推动基于字典学习的彩色图像修复技术的发展。
function x = robust_SL0(A, y, sigmaNoise, varargin)
% Modified SL0 algorithm. Should be robust to noise.
%
% x = robust_SL0(A, y, sigmaNoise, varargin)
%
% Input: A - 'mixing' matrix
%
% y - right side vector (y = Ax + noise)
%
% sigmaNoise - approximate noise level
%
% optional parameters: ...
%
% Input optional parameters as ('parameter name', 'parameter value') pairs
%
% Output: x - sparse solution
%
% [1] Eftekhari, Babaie-Zadeh, Jutten, Moghaddam, Robust-SL0 for stable
% sparse representations in noisy settings, ICASSP 2009.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
inner_iters = 5;
sigmaMin = 1e-6;
decrease = 0.8;
mi = 0.1;
% projection = 'default';
verbose = false;
if isfloat(A)
D = @(x) A*x;
Apinv = pinv(A);
Dpinv = @(x) Apinv*x;
elseif isa(A, 'function_handle')
D = A;
else
error('A is of wrong type!');
end
% Check for optional parameters
if(mod(length(varargin),2) == 1)
error('Optional arguments come in pairs.');
end
for i = 1:2:length(varargin)
switch lower(varargin{i})
case 'apinv'
Dpinv = varargin{i+1};
case 'mi'
mi = varargin{i+1};
case 'inner'
inner_iters = varargin{i+1};
case 'decrease'
decrease = varargin{i+1};
case 'sigmamin'
sigmaMin = varargin{i+1};
% case 'projection'
% projection = varargin{i+1};
case 'verbose'
verbose = varargin{i+1};
end
end
% Check if Apinv is provided
if ~exist('Dpinv', 'var')
error('Pseudoinverse operator not provided!');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x = Dpinv(y);
sigma = 2*max(abs(x));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
iter = 0;
if verbose
hh = waitbar(0, 'Algorithm in progress...');
end
maxiter = ceil(log(sigmaMin/sigma) / log(decrease));
while sigma > sigmaMin
iter = iter+1;
for i = 1:inner_iters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gradient descent step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delta = OurDelta(x, sigma);
x = x - mi * delta;
residual = D(x) - y;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Projection step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Project if norm of the residual is above the noise level (this is
% the approach suggested in [1])
if norm(residual, 2)^2 > sigmaNoise
x = x - Dpinv(residual);
end
end
sigma = sigma * decrease;
if verbose
waitbar(iter/maxiter, hh);
end
end
if verbose
close(hh)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function delta = OurDelta(s, sigma)
% delta = s.*exp(-s.^2/sigma^2);
delta = s .* exp(-s.^2/(2*sigma^2));
M. Filipovic, I. Kopriva, A. Cichocki: Inpainting color images in learned dictionary, 20th European Signal Processing Conference (EUSIPCO), Special session on tensor decompositions and source separation, August 27-31, 2012., Bucharest, Romania