FlinkSQL 语法扩展

FlinkSQL 语法扩展

参考flink-sql-parser模块了解下Flink如何扩展Calcite语法,创建空项目进行语法扩展。首先,拷贝codegen文件夹下的内容,调整生成解析器实现类包名称和类名称,删除imports中的内容及Flink引入的解析方法。然后,将pom中javcc编译、freemarker相关的插件全部拷贝过来。

DQL

show tables

扩展show tables语法,当匹配到show tables语句后最终生成SqlShowTables。因此,需要扩展SqlNode构建SqlShowTables,同时从parserImpls.ftl中定义解析规则,还要从Parser.tdd中增加TABLES 关键字不然定义的规则无法识别,同时statementParserMethods中引入解析规则方法。

扩展SqlNode

规则匹配成功返回一个SqlShowTables节点,作为解析树中的sqlnode。

package cn.todd.flink.sql.parser.dql;
// show tables 语句解析后生成的SqlNode
public class SqlShowTables extends SqlCall {
    public static final SqlSpecialOperator OPERATOR = new SqlSpecialOperator("SHOW TABLES", SqlKind.OTHER);
    public SqlShowTables(SqlParserPos pos) {
        super(pos);
    }
    @Override
    public SqlOperator getOperator() {
        return OPERATOR;
    }
    @Override
    public List getOperandList() {
        return Collections.emptyList();
    }
    @Override
    public void unparse(
            SqlWriter writer,
            int leftPrec,
            int rightPrec) {
        writer.keyword("SHOW TABLES");
    }
}

定义规则

从parserImpls.ftl定义解析show tables的规则,包含了方法名及对应的规则。 如果javacc不想花太多时间系统学习的,可以根据生成的SqlParserImpl类生成的方法逆向学习。
SqlShowTables()理解成包裹解析规则的方法,输出的字符匹配 show tables关键字,如果匹配到则返回SqlShowTables(Sqlnode)。

/**
* Parse a "Show Tables" metadata query command.
* 匹配 SHOW TABLES 关键字,如果匹配到返回SqlShowTables sqlNode
*/
SqlShowTables SqlShowTables() :
{
}
{
     
    {
        return new SqlShowTables(getPos());
    }
}

应用规则

SHOW关键字已经从Parser.jj文件中定义,所以需要扩展TABLES关键字才能正确匹配SHOW TABLES。Parser.tdd中的扩展:

  1. 新增TABLES关键字。
  2. imports增加SqlShowTables类。因为sql语法解析全部由SqlParserImpl类完成,SqlShowTables()返回值为自己定义的SqlShowTables。
  3. statementParserMethods增加定义的规则方法。新规则给Parser使用。
 keywords: ["TABLES"] 
 imports: [
    "cn.todd.flink.sql.parser.dql.SqlShowTables"
  ]
statementParserMethods:[
   "SqlShowTables()"
]
 

执行mvn -X clean compile生成定义的解析类SqlParserImpl.java。重点看生成的SqlShowTables(),词法解析器成功消费两个连续的TOKEN SHOW``TABLES 则创建SqlShowTables

/**
* Parse a "Show Tables" metadata query command.
* 匹配 SHOW TABLES 关键字,如果匹配到返回SqlShowTables sqlNode
*/
  final public SqlShowTables SqlShowTables() throws ParseException {
    jj_consume_token(SHOW);
    jj_consume_token(TABLES);
    {if (true) return new SqlShowTables(getPos());}
    throw new Error("Missing return statement in function");
  }

测试解析

protected SqlNode parseStmtAndHandleEx(String sql) {
    final SqlNode sqlNode;
    try {
        sqlNode = getSqlParser(sql).parseStmt();
    } catch (SqlParseException e) {
        throw new RuntimeException("Error while parsing SQL: " + sql, e);
    }
    return sqlNode;
}

private SqlParser getSqlParser(String sql) {
    return SqlParser.create(sql, SqlParser.configBuilder()
                            //myself SqlParserImpl
                            .setParserFactory(SqlParserImpl.FACTORY)
                            .setQuoting(Quoting.BACK_TICK)
                            .setUnquotedCasing(Casing.UNCHANGED)
                            .setQuotedCasing(Casing.UNCHANGED)
                            .build());
}


public class dqlStatementTest extends BaseParser {

    @Test
    public void testShowTables() throws SqlParseException {
        String sql = "show tables";
        SqlNode sqlNode = parseStmtAndHandleEx(sql);
        Assert.assertTrue(sqlNode instanceof SqlShowTables);
    }
}

show current catalog(database)

解析show current catalog,show current database。

扩展SqlNode

同org.apache.flink.sql.parser.dql.SqlShowCurrentCatalog,
同org.apache.flink.sql.parser.dql.SqlShowCurrentDatabase

定义规则

( do.. | do.. ) javacc if语法格式。

SqlCall SqlShowCurrentCatalogOrDatabase() :
{
}
{
      ( 
        {
            return new SqlShowCurrentCatalog(getPos());
        }
    | 
        {
            return new SqlShowCurrentDatabase(getPos());
        }
    )
}

应用规则

Parser.tdd中的扩展:

  1. import: ["xxx.SqlShowCurrentCatalog" "xxx.SqlShowCurrentDatabase"]
  2. statementParserMethods:[ "SqlShowCurrentCatalogOrDatabase()" ]

执行mvn -X clean compile生成定义的解析类SqlParserImpl.java,看 SqlShowCurrentCatalogOrDatabase()方法具体的解析流程。

/**
* Parse a "show current catalog or show current  database" metadata query command.
*
*/
  final public SqlCall SqlShowCurrentCatalogOrDatabase() throws ParseException {
    // 连续消费 SHOW CURRENT
    jj_consume_token(SHOW);
    jj_consume_token(CURRENT);
    // 下一个Token如果是CATALOG 生成SqlShowCurrentDatabase,否则生成SqlShowCurrentDatabase
    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
    case CATALOG:
      jj_consume_token(CATALOG);
            {if (true) return new SqlShowCurrentCatalog(getPos());}
      break;
    case DATABASE:
      jj_consume_token(DATABASE);
        {if (true) return new SqlShowCurrentDatabase(getPos());}
      break;
    default:
      jj_la1[22] = jj_gen;
      jj_consume_token(-1);
      throw new ParseException();
    }
    throw new Error("Missing return statement in function");
  }

测试解析

@Test
public void testShowCurrentCatalogOrDatabase() throws SqlParseException {
    String catalogSql = "show current catalog";
    SqlNode catalogSqNode = parseStmtAndHandleEx(catalogSql);
    Assert.assertTrue(catalogSqNode instanceof SqlShowCurrentCatalog);


    String databaseSql = "show current database";
    SqlNode databaseSqlNode = parseStmtAndHandleEx(databaseSql);
    Assert.assertTrue(databaseSqlNode instanceof SqlShowCurrentDatabase);
}

describe catalog

扩展SqlNode

同org.apache.flink.sql.parser.dql.SqlDescribeCatalog

定义规则

SimpleIdentifier()规则为parser.jj已经定义,DESCRIBE CATALOG后边提取catalogName,并标识解析位置getPos();

/**
*  Parse  describe catalog xx.   SimpleIdentifier() defined in parser.jj
*/
SqlDescribeCatalog SqlDescribeCatalog() :
{
    SqlIdentifier catalogName;
    SqlParserPos pos;
}
{
      { pos = getPos();}
    catalogName = SimpleIdentifier()
    {
        return new SqlDescribeCatalog(pos, catalogName);
    }
}

应用规则

Parser.tdd中的扩展:xx 为包名

  1. import: [ "xxx.SqlDescribeCatalog"]
  2. statementParserMethods:[ "SqlDescribeCatalog()" ]
    执行mvn -X clean compile生成定义的解析类SqlParserImpl.java,查看 SqlDescribeCatalog()方法具体的解析流程。
/**
*
*  Parse  describe catalog xx.   SimpleIdentifier() defined in parser.jj
*/
  final public SqlDescribeCatalog SqlDescribeCatalog() throws ParseException {
    SqlIdentifier catalogName;
    SqlParserPos pos;
    
    jj_consume_token(DESCRIBE);
    jj_consume_token(CATALOG);
    // 匹配 DESCRIBE CATALOG后,提取pos,解析出catalogName
    pos = getPos();
    catalogName = SimpleIdentifier();
     {if (true) return new SqlDescribeCatalog(pos, catalogName);}
    throw new Error("Missing return statement in function");
  }

测试解析

  @Test
    public void testDescribeCatalog() throws SqlParseException {
        String sql = "describe catalog testCatalog";
        SqlNode sqlNode = parseStmtAndHandleEx(sql);
        Assert.assertTrue(sqlNode instanceof SqlDescribeCatalog);

        String catalogName = ((SqlDescribeCatalog) sqlNode).getCatalogName();
        Assert.assertEquals(catalogName,"testCatalog");
    }

DDL

period for system

首先实现最简单的DDL语句,只包含对表名、列名、类型、属性、维表标识字段的解析,有了最初的框架后扩展watermark字段、计算列、数据类型等语法规则。period for system是Blink最初的维表标识字段,用来区分源表和结果表。语法结构:

CREATE TABLE user_info (
    userId BIGINT,
    userName VARCHAR(10),
    userAge BIGIN
    PERIOD FOR SYSTEM_TIME
) WITH (
    'connector' = 'kafka',
    'properties.bootstrap.servers' = 'localhost:9092',
    'topic' = 'tp01',
    'format' = 'json',
    'scan.startup.mode' = 'latest-offset'
);

扩展SqlNode

  1. 参考org.apache.flink.sql.parser.ddl.SqlCreateTable实现,侧重于SQL解析部分。只保留最基础的属性信息。
  2. 未实现ExtendedSqlNode#validate,暂时不需要对sqlNode进行验证。Flink执行时会对ExtendedSqlNode进行验证,具体查看org.apache.flink.table.planner.calcite.FlinkPlannerImpl#validate。
  3. unparse方法输出SqlNode具体内容, 如果不重写的话DEBUG或者toString时看不到具体sql语句。
public class SqlCreateTable extends SqlCreate {

    public static final SqlSpecialOperator OPERATOR = new SqlSpecialOperator("CREATE TABLE", SqlKind.CREATE_TABLE);

    private final SqlIdentifier tableName;

    private final SqlNodeList columnList;

    private final SqlNodeList propertyList;

    private final boolean sideFlag;

    public SqlCreateTable(
            SqlParserPos pos,
            SqlIdentifier tableName,
            SqlNodeList columnList,
            SqlNodeList propertyList,
            boolean sideFlag) {
        super(OPERATOR, pos, false, false);
        this.tableName = requireNonNull(tableName, "Table name is missing");
        this.columnList = requireNonNull(columnList, "Column list should not be null");
        this.propertyList = propertyList;
        this.sideFlag = sideFlag;
    }

    @Override
    public SqlOperator getOperator() {
        return OPERATOR;
    }

    @Override
    public List getOperandList() {
        return ImmutableNullableList.of(tableName, columnList, propertyList);
    }
    ...........
    /**
     * Table creation context.
     */
    public static class TableCreationContext {
        public List columnList = new ArrayList<>();
        public boolean sideFlag;
    }
}

参考引入:org.apache.flink.sql.parser.ddl.SqlTableColumn代表解析后的字段,包含名称和类型。
参考引入:org.apache.flink.sql.parser.ddl.SqlTableOption 代表属性值
创建FlinkSqlDataTypeSpec代表数据类型,使用calcite原始的类型,不做任何数据类型的扩展。

public class FlinkSqlDataTypeSpec extends SqlDataTypeSpec {
    public FlinkSqlDataTypeSpec(SqlIdentifier typeName, int precision, int scale,
                                String charSetName, TimeZone timeZone,
                                SqlParserPos pos) {
        super(typeName, precision, scale, charSetName, timeZone, pos);
    }

    public FlinkSqlDataTypeSpec(SqlIdentifier collectionsTypeName, SqlIdentifier typeName, int precision, int scale,
                                String charSetName, SqlParserPos pos) {
        super(collectionsTypeName, typeName, precision, scale, charSetName, pos);
    }

    public FlinkSqlDataTypeSpec(SqlIdentifier collectionsTypeName, SqlIdentifier typeName, int precision, int scale,
                                String charSetName, TimeZone timeZone, Boolean nullable,
                                SqlParserPos pos) {
        super(collectionsTypeName, typeName, precision, scale, charSetName, timeZone, nullable, pos);
    }

    public FlinkSqlDataTypeSpec(SqlIdentifier collectionsTypeName, SqlIdentifier typeName,
                                SqlIdentifier baseTypeName, int precision, int scale, String charSetName,
                                TimeZone timeZone, Boolean nullable, SqlParserPos pos) {
        super(collectionsTypeName, typeName, baseTypeName, precision, scale, charSetName, timeZone, nullable, pos);
    }
}

定义规则

围绕create table ..with()结构进行匹配。TableCreationContext对象封装相关属性,在SqlCreateTable中定义。

// 解析create table语法方法,calcite规定参数必须为(Span s, boolean replace)
SqlCreate SqlCreateTable(Span s, boolean replace) :
{   //  定义相关属性,在解析时进行赋值
    final SqlParserPos startPos = s.pos();
    SqlIdentifier tableName;
    SqlNodeList columnList = SqlNodeList.EMPTY;
    SqlNodeList propertyList = SqlNodeList.EMPTY;
    SqlParserPos pos = startPos;
    boolean sideFlag = false;
}
{
    
    tableName = CompoundIdentifier()
    
    // 左括号    右括号
     { pos = getPos(); TableCreationContext ctx = new TableCreationContext();}
    TableColumn(ctx)
    (
       //   表示逗号, 属性列可以有多个使用 ()*表示
         TableColumn(ctx)
    )*
    {
        pos = pos.plus(getPos());
        //  根据解析出的columnList为SqlCreate绑定columnList信息
        columnList = new SqlNodeList(ctx.columnList, pos);
        sideFlag = ctx.sideFlag;
    }
    
        
    [
        
        //  解析出表中的属性值
        propertyList = TableProperties()
    ]

    {
        return new SqlCreateTable(startPos.plus(getPos()),
            tableName,
            columnList,
            propertyList,
            sideFlag);
    }
}

/**
*  解析表字段列.
*  LOOKAHEAD(3)规则查看https://blog.csdn.net/qingmengwuhen1/article/details/83313303
* 
*/
void TableColumn(TableCreationContext context) :
{
}
{
    // 向下扫描3个token值,进行正确匹配,用来解决选择点冲突
    // 列可能是正常列或者维表标识,Flink还定义了watermark相关规则
    (LOOKAHEAD(3)
        TableColumn2(context.columnList)
    |
        context.sideFlag = SideFlag()
    )
}
//  对普通列的解析,e.g: name varchar(10)
void TableColumn2(List list) :
{
    SqlIdentifier name;
    SqlDataTypeSpec type;
}
{
    // 复合类型解析xx.xxx.xxx格式
    name = CompoundIdentifier()
    type = FlinkDataType()
    {
        SqlTableColumn tableColumn = new SqlTableColumn(name, type, getPos());
        list.add(tableColumn);
    }
}
//   引入对类型规则的解析
SqlDataTypeSpec FlinkDataType() :
{
    final SqlIdentifier typeName;
    int scale = -1;
    int precision = -1;
    String charSetName = null;
    boolean nullable = true;
    final Span s;
}
{
    typeName = FlinkTypeName() {
        s = span();
    }
    [ // 类型的精确度,egg:(1024) ,(10,12)
             
            precision = UnsignedIntLiteral()
            [
                
                scale = UnsignedIntLiteral()
            ]
        
    ]

    {
        // 返回对数据类型节点
        return new FlinkSqlDataTypeSpec(typeName,
        precision,
        scale,
        charSetName,
        null,
        s.end(this));
    }
}

// 对类型名称的解析,egg: bigint,varchar
SqlIdentifier FlinkTypeName() :
{
    final SqlTypeName sqlTypeName;
    final SqlIdentifier typeName;
    final Span s = Span.of();
}
{
    (
        LOOKAHEAD(2)
        // Types used for JDBC and ODBC scalar conversion function
        sqlTypeName = SqlTypeName(s) 
        {
            typeName = new SqlIdentifier(sqlTypeName.name(), s.end(this));
        }
    |
        typeName = CompoundIdentifier() {
            throw new ParseException("UDT in DDL is not supported yet.");
        }
    )
    {
        return typeName;
    }
}

/**
* 维表标识
*/
boolean SideFlag() :
{
    SqlParserPos pos;
    SqlIdentifier columnName;
}
{
     { pos = getPos(); }   { return true; }
    |
    { return false; }
}

/** Parse a table properties. */
SqlNodeList TableProperties():
{
    SqlNode property;
    final List proList = new ArrayList();
    final Span span;
}
{
     { span = span(); }
    [
        //  对具体某一个KEY VALUE的解析
        property = TableOption()
        {
            proList.add(property);
        }
        (   // 属性可以有多个,使用逗号分隔
             property = TableOption()
            {
                proList.add(property);
            }
        )*
    ]
    
    {  return new SqlNodeList(proList, span.end(this)); }
}

SqlNode TableOption() :
{
    SqlNode key;
    SqlNode value;
    SqlParserPos pos;
}
{
    key = StringLiteral()
    // TODO SqlParserPos位置有啥要求?    
    { pos = getPos(); }
    //   等号
     value = StringLiteral()
    {
        return new SqlTableOption(key, value, getPos());
    }
}
 
 

应用规则

parser.tdd引入扩展的类以及规则:

  1. imports导入相关类:
  imports: [
    "org.apache.calcite.sql.SqlCreate"
    "cn.todd.flink.sql.parser.ddl.SqlCreateTable"
    "cn.todd.flink.sql.parser.ddl.SqlCreateTable.TableCreationContext"
    "cn.todd.flink.sql.parser.ddl.SqlTableColumn"
    "cn.todd.flink.sql.parser.ddl.SqlTableOption"
    "cn.todd.flink.sql.parser.FlinkSqlDataTypeSpec"
  ]
  1. createStatementParserMethods引入对create table解析的规则方法。
# List of methods for parsing extensions to "CREATE [OR REPLACE]" calls.
# Each must accept arguments "(SqlParserPos pos, boolean replace)".  
createStatementParserMethods: [
  "SqlCreateTable" 
]

执行mvn -X clean compile生成定义的解析类SqlParserImpl.java,查看方法具体执行逻辑。编译失败时,根据提示修改parserImpls.ftl中的内容,提示信息通常为parser.jj的具体行,可以直接打开generated-sources生成的parser.jj文件内容查看。

测试解析

public class ddlStatementTest extends BaseParser {
    private final static Logger LOG = LoggerFactory.getLogger(ddlStatementTest.class);

    @Test
    public void testSimpleCreateTable() throws SqlParseException {
        String ddlSql = "CREATE TABLE abc.user_info (\n"
                + "    userId BIGINT,\n"
                + "    a.b.userName VARCHAR(10),\n"
                + "    userAge BIGINT,"
                + "    PERIOD FOR SYSTEM_TIME"
                + ") WITH (\n"
                + "    'connector' = 'kafka',\n"
                + "    'properties.bootstrap.servers' = 'localhost:9092',\n"
                + "    'topic' = 'tp01',\n"
                + "    'format' = 'json',\n"
                + "    'scan.startup.mode' = 'latest-offset'\n"
                + ")";

        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);
        Assert.assertTrue(ddlSqlNode instanceof SqlCreateTable);

        SqlCreateTable createTable = (SqlCreateTable) ddlSqlNode;
        SqlNodeList columns = createTable.getColumnList();

        System.out.println(String.format("tableName: %s",createTable.getTableName()));
        for (SqlNode column : columns) {
            SqlTableColumn tableColumn = (SqlTableColumn) column;
            String columnName = tableColumn.getName().toString();
            String typeName = tableColumn.getType().getTypeName().getSimple();
            System.out.println(String.format("columnName: %s, typeName: %s", columnName, typeName));
        }

        SqlNodeList properties = createTable.getPropertyList();
        for (SqlNode sqlNode: properties) {
            SqlNode key = ((SqlTableOption) sqlNode).getKey();
            SqlNode value = ((SqlTableOption) sqlNode).getValue();
            System.out.println(String.format("properties: key:%s, value:%s ", key, value));
        }

        boolean sideFlag = createTable.isSideFlag();
        System.out.println(String.format("sideFlag: %s", sideFlag));

    }
}

Computed Column

扩展SqlNode

SqlTableColumn增加表达式参数。

public class SqlTableColumn extends SqlCall {
    private static final SqlSpecialOperator OPERATOR = new SqlSpecialOperator("COLUMN_DECL", SqlKind.COLUMN_DECL);

    private SqlIdentifier name;
    private SqlDataTypeSpec type;
    private SqlNode expr;

    public SqlTableColumn(SqlIdentifier name,
                          SqlDataTypeSpec type,
                          SqlParserPos pos) {
        super(pos);
        this.name = requireNonNull(name, "Column name should not be null");
        this.type = requireNonNull(type, "Column type should not be null");
    }

    public SqlTableColumn(SqlIdentifier name,
                          SqlNode expr,
                          SqlParserPos pos) {
        super(pos);
        this.name = requireNonNull(name, "Column name should not be null");
        this.expr = requireNonNull(expr, "Column expression should not be null");
    }

    @Override
    public SqlOperator getOperator() {
        return OPERATOR;
    }

    @Override
    public List getOperandList() {
        return isGenerated() ?
                ImmutableNullableList.of(name, expr) :
                ImmutableNullableList.of(name, type);
    }

    public boolean isGenerated() {
        return expr != null;
    }

    @Override
    public void unparse(SqlWriter writer, int leftPrec, int rightPrec) {
        this.name.unparse(writer, leftPrec, rightPrec);
        if (isGenerated()) {
            writer.keyword("AS");
            this.expr.unparse(writer, leftPrec, rightPrec);
        } else {
            writer.print(" ");
            this.type.unparse(writer, leftPrec, rightPrec);
        }
    }

    public SqlNode getExpr() {
        return expr;
    }

    public SqlIdentifier getName() {
        return name;
    }

    public void setName(SqlIdentifier name) {
        this.name = name;
    }

    public SqlDataTypeSpec getType() {
        return type;
    }

    public void setType(SqlDataTypeSpec type) {
        this.type = type;
    }
}

定义规则

void TableColumn(TableCreationContext context) :
{
}
{
    (LOOKAHEAD(3)
        TableColumn2(context.columnList)
    |
        ComputedColumn(context)   // 新增规则
    |
        context.sideFlag = SideFlag()
    )
}

/**
*  支持计算列 egg:  proctime as proctime()
*/
void ComputedColumn(TableCreationContext context) :
{
    SqlIdentifier identifier;
    SqlNode expr;
    SqlParserPos pos;
}
{
    identifier = SimpleIdentifier() {pos = getPos();}
    
    // 解析非查询的行表达式    
    expr = Expression(ExprContext.ACCEPT_NON_QUERY)
    {
        SqlTableColumn computedColumn = new SqlTableColumn(identifier, expr, getPos());
        context.columnList.add(computedColumn);
    }
}

应用规则

parser.tdd不需要做变更。

测试解析

    @Test
    public void testCreateTableContainsExpr() throws SqlParseException {
        String ddlSql = "CREATE TABLE user_info (\n"
                + "    userId BIGINT,\n"
                + "    userName VARCHAR(10),\n"
                + "    proctime AS xxxx() \n"
                + ") WITH (\n"
                + "    'connector' = 'kafka',\n"
                + "    'properties.bootstrap.servers' = 'localhost:9092',\n"
                + "    'topic' = 'tp01',\n"
                + "    'format' = 'json',\n"
                + "    'scan.startup.mode' = 'latest-offset'\n"
                + ")";

        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);
        Assert.assertTrue(ddlSqlNode instanceof SqlCreateTable);

        SqlCreateTable createTable = (SqlCreateTable) ddlSqlNode;
        SqlNodeList columns = createTable.getColumnList();

        System.out.println(String.format("tableName: %s",createTable.getTableName()));
        for (SqlNode column : columns) {
            SqlTableColumn tableColumn = (SqlTableColumn) column;
            if (!tableColumn.isGenerated()){
                String columnName = tableColumn.getName().toString();
                String typeName = tableColumn.getType().getTypeName().getSimple();
                System.out.println(String.format("columnName: %s, typeName: %s", columnName, typeName));
            } else {
                String name = tableColumn.getName().toString();
                SqlNode expr = tableColumn.getExpr();
                System.out.println(String.format("name: %s, expr: %s", name, expr));

            }

        }
    }

watermark for xx as ..

扩展SqlNode

新增SqlWatermark类,同org.apache.flink.sql.parser.ddl.SqlWatermark
SqlCreateTable新增SqlWatermark属性。
TableCreationContext新增SqlWatermark属性。

定义规则

/**
*  解析表字段列
*/
void TableColumn(TableCreationContext context) :
{
}
{
    (LOOKAHEAD(3)
        TableColumn2(context.columnList)
    |
        ComputedColumn(context)
    |
        Watermark(context)  // 引入对Watermark字段的解析
    |
        context.sideFlag = SideFlag()
    )
}

void Watermark(TableCreationContext context) :
{
    SqlIdentifier eventTimeColumnName;
    SqlParserPos pos;
    SqlNode watermarkStrategy;
}
{
     {pos = getPos();} 
    eventTimeColumnName = CompoundIdentifier()
    
    // 非查询 表达式
    watermarkStrategy = Expression(ExprContext.ACCEPT_NON_QUERY)
    {
        if (context.watermark != null) {
            throw new RuntimeException("Multiple WATERMARK statements is not supported yet.");
        } else {
            context.watermark = new SqlWatermark(pos, eventTimeColumnName, watermarkStrategy);
        }
    }
}

应用规则

  1. import:"cn.todd.flink.sql.parser.ddl.SqlWatermark"
  2. keywords: "WATERMARK"

测试解析


    @Test
    public void testCreateTableWaterMark() throws SqlParseException {
        String ddlSql = "CREATE TABLE user_info (\n"
                + "    userId BIGINT,\n"
                + "    userName VARCHAR(10),\n"
                + "    ts timestamp(10),\n"
                + "    WATERMARK FOR ts AS ts - INTERVAL '5' SECOND\n"
                + ") WITH (\n"
                + "    'connector' = 'kafka',\n"
                + "    'properties.bootstrap.servers' = 'localhost:9092',\n"
                + "    'topic' = 'tp01',\n"
                + "    'format' = 'json',\n"
                + "    'scan.startup.mode' = 'latest-offset'\n"
                + ")";

        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);
        Assert.assertTrue(ddlSqlNode instanceof SqlCreateTable);

        SqlCreateTable createTable = (SqlCreateTable) ddlSqlNode;
        SqlNodeList columns = createTable.getColumnList();

        System.out.println(String.format("tableName: %s",createTable.getTableName()));
        for (SqlNode column : columns) {
            SqlTableColumn tableColumn = (SqlTableColumn) column;
            if (!tableColumn.isGenerated()){
                String columnName = tableColumn.getName().toString();
                String typeName = tableColumn.getType().getTypeName().getSimple();
                System.out.println(String.format("columnName: %s, typeName: %s", columnName, typeName));
            } else {
                String name = tableColumn.getName().toString();
                SqlNode expr = tableColumn.getExpr();
                System.out.println(String.format("name: %s, expr: %s", name, expr));
            }
        }

        if (createTable.getWatermark() !=null ) {
            SqlWatermark watermark = createTable.getWatermark();
            String eventTimeColumnName = watermark.getEventTimeColumnName().toString();
            String watermarkStrategy = watermark.getWatermarkStrategy().toString();
            System.out.println(String.format("eventTimeColumnName: %s, watermarkStrategy: %s", eventTimeColumnName, watermarkStrategy));

        }
    }

create view

扩展SqlNode

同:org.apache.flink.sql.parser.ddl.SqlCreateView

定义规则

/**
* Parses a "IF EXISTS" option, default is false.
*/
boolean IfExistsOpt() :
{
}
{
    (
        LOOKAHEAD(2)
          { return true; }
    |
       { return false; }
    )
}

/**
* Parses a "IF NOT EXISTS" option, default is false.
*/
boolean IfNotExistsOpt() :
{
}
{
    (
        LOOKAHEAD(3)
           { return true; }
    |
        { return false; }
    )
}

/**
*   parse : create view xxx as select ... or create view xxx(..)
*/
SqlCreate SqlCreateView(Span s, boolean replace) : {
    SqlIdentifier viewName;
    SqlNode query=null;
    SqlNodeList fieldList = SqlNodeList.EMPTY;
    boolean ifNotExists = false;
}
{
    
    viewName = CompoundIdentifier()
    ifNotExists = IfNotExistsOpt()
    [
        //  括号中的简单标识符列表(a,b,c)。parser.jj定义
        fieldList = ParenthesizedSimpleIdentifierList()
    ]
    [
        
        //解析查询表达式 
        query = OrderedQueryOrExpr(ExprContext.ACCEPT_QUERY)
    ]
    {
        return new SqlCreateView(s.pos(), viewName, fieldList, query, replace, ifNotExists);
    }
}

应用规则

  1. import:""cn.todd.flink.sql.parser.ddl.SqlCreateView""
  2. createStatementParserMethods:"SqlCreateView"

测试解析

    @Test
    public void testCreateView() throws SqlParseException {
        String ddlSql = "CREATE view user_info AS Select * from infos";
        String ddlSql2 = "CREATE view user_info (userId,userName ) AS Select * from infos";
        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);
        System.out.println(ddlSqlNode);

    }

    @Test
    public void testCreateViewAsSelect() throws SqlParseException {
        String ddlSql = "create view user_info as select * from infos";
        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);
        Assert.assertTrue(ddlSqlNode instanceof SqlCreateView);
        System.out.println(ddlSqlNode);
    }

create function

扩展SqlNode

同:org.apache.flink.sql.parser.ddl.SqlCreateFunction

定义规则

/**
*   parse : create function name as 'xxx.ccc.cc' LANGUAGE java
*/
SqlCreate SqlCreateFunction(Span s, boolean replace) :
{
    SqlIdentifier functionIdentifier = null;
    SqlCharStringLiteral functionClassName = null;
    String functionLanguage = null;
    boolean ifNotExists = false;
}
{
    
        ifNotExists = IfNotExistsOpt()
        functionIdentifier = CompoundIdentifier()
     
    {
        //  获取字符串中的内容
        String p = SqlParserUtil.parseString(token.image);
        functionClassName = SqlLiteral.createCharString(p, getPos());
    }
    [
        (
              { functionLanguage = "JAVA"; }
        |
             { functionLanguage = "SCALA"; }
        |
               { functionLanguage = "SQL"; }
        |
             { functionLanguage = "PYTHON"; }
        )
    ]
    {
       return new SqlCreateFunction(s.pos(), functionIdentifier, functionClassName, functionLanguage, ifNotExists);
    }
}

应用规则

  1. import:"cn.todd.flink.sql.parser.ddl.SqlCreateFunction"
  2. createStatementParserMethods:"SqlCreateFunction"
  3. keywords: "PYTHON","SCALA"

测试解析

public class CreateFunctionTest extends BaseParser {


    @Test
    public void testCreateFunction() throws SqlParseException {
        String ddlSql = "create function str2Timestamp as 'aaa.b.c'";
        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);

        Assert.assertTrue(ddlSqlNode instanceof SqlCreateFunction);
        SqlCreateFunction createFunction = (SqlCreateFunction) ddlSqlNode;
        String functionClassName = createFunction.getFunctionClassName().toString();
        String functionIdentifier = createFunction.getFunctionIdentifier()[0];

        System.out.println(String.format("functionIdentifier:%s , functionClassName: %s,",functionIdentifier, functionClassName));
    }

    @Test
    public void testCreateFunctionWithLanguage() throws SqlParseException {
        String ddlSql = "create function str2Timestamp as 'aaa.b.c' language java";
        SqlNode ddlSqlNode = parseStmtAndHandleEx(ddlSql);

        Assert.assertTrue(ddlSqlNode instanceof SqlCreateFunction);
        SqlCreateFunction createFunction = (SqlCreateFunction) ddlSqlNode;
        String functionClassName = createFunction.getFunctionClassName().toString();
        String functionIdentifier = createFunction.getFunctionIdentifier()[0];
        String functionLanguage = createFunction.getFunctionLanguage();

        System.out.println(String.format("functionIdentifier:%s , functionClassName: %s,functionLanguage: %s",
                functionIdentifier, functionClassName,functionLanguage));
    }
}

DML

insert into..select

扩展SqlNode

FlinkSQL为支持HIVE语法引入了partition相关属性,对SqlInsert做了部分扩展。创建RichSqlInsert直接继承SqlInsert。

定义规则

完全使用calcite定义的规则,不做任何扩展。

/**
* Parses an INSERT statement.  Copy from parser.jj
*/
SqlNode RichSqlInsert() :
{
    final List keywords = new ArrayList();
    final SqlNodeList keywordList;
    SqlNode table;
    SqlNodeList extendList = null;
    SqlNode source;
    SqlNodeList columnList = null;
    final Span s;
}
{
    (
    
    |
     { keywords.add(SqlInsertKeyword.UPSERT.symbol(getPos())); }
    )
    { s = span(); }
    SqlInsertKeywords(keywords) {
        keywordList = new SqlNodeList(keywords, s.addAll(keywords).pos());
    }
     table = CompoundIdentifier()
    [
        LOOKAHEAD(5)
        [  ]
        extendList = ExtendList() {
            table = extend(table, extendList);
        }
    ]

    [
        LOOKAHEAD(2)
        { final Pair p; }
        p = ParenthesizedCompoundIdentifierList() {
            if (p.right.size() > 0) {
                table = extend(table, p.right);
            }
            if (p.left.size() > 0) {
                columnList = p.left;
            }
        }
    ]
        source = OrderedQueryOrExpr(ExprContext.ACCEPT_QUERY) {
        return new RichSqlInsert(s.end(source), keywordList, table, source, columnList);
    }
}

应用规则

  1. statementParserMethods: [ "RichSqlInsert()" ]
  2. import:["cn.todd.flink.sql.parser.dml.RichSqlInsert"]

测试解析

public class InsertStatementTest extends BaseParser {
    @Test
    public void testSimpleInsertStat() throws SqlParseException {
        String insertSql = "insert into  sinkTable  select name ,age from sourceTable";
        SqlNode insertSqlNode = parseStmtAndHandleEx(insertSql);
        Assert.assertTrue(insertSqlNode instanceof RichSqlInsert);

        SqlNode targetTable = ((SqlInsert) insertSqlNode).getTargetTable();
        SqlNode source = ((SqlInsert) insertSqlNode).getSource();

        System.out.println(String.format("targetTable: %s, \nsource: %s", targetTable, source));
    }
}

总结

  1. 扩展语法规则:Parser.jj包含了对标准SQL的解析,如果要扩展则在原始规则上做修改,从Parser.jj搜索要使用的方法。例如:Flink在Parser.jj#SqlInsert语法上扩展出RichSqlInsert规则,支持对Partion的解析。
  2. 了解规则含义:引入的规则不清楚含义时,可以通过阅读生成的parserImpl类,找到对应的方法。
  3. 规则调试:从parserImpls.ftl引入的规则在编译时可能会出错,需要打开生成的parserImpl类找到对应的行数进行排查。

你可能感兴趣的:(FlinkSQL 语法扩展)