- 洛谷题单python解 【算法1-1】模拟与高精度
Keyk__
算法python开发语言
P1009[NOIP1998普及组]阶乘之和deffac(n):ifn==0orn==1:return1else:returnn*fac(n-1)s=int(input())fac_sum=0forjinrange(1,s+1):fac_sum+=fac(j)print(str(fac_sum))
- C语言学习,插入排序
五味香
c语言学习排序算法算法开发语言android数据结构
C语言,插入排序是一种简单直观的排序算法,插入排序是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。示例://插入排序函数voidinsertionSort(intarr[],intn){for(inti=1;i=0&&arr[j]>key){arr[j+1]=arr[j];j=j-1;}arr[j+1]=key;}}//打印voidprintArray(inta
- java设计模式单件模式_Head First设计模式(5):单件模式
weixin_39822493
java设计模式单件模式
更多的可以参考我的博客,也在陆续更新inghttp://www.hspweb.cn/单件模式确保一个类只有一个实例,并提供一个全局访点。例子:学生的学号生成方案,是在学生注册后,通过录入学生的基本信息,包括入学学年、学院、专业、班级等信息后,保存相应的资料后自动生成的。学号生成器的业务算法为:入学学年(2位)+学院代码(2位)+专业代码(2位)+班级代码(2位)+序号(2位)1.目录image2.
- 基于ThinkPHP 5~8兼容的推荐算法类实现,
极梦网络无忧
自建推荐算法算法机器学习
在现代推荐系统中,随着用户量和物品量的增长,传统的推荐算法可能会面临性能瓶颈。本文将介绍如何基于ThinkPHP实现一个高性能的推荐系统,结合显性反馈(如兴趣选择)、隐性反馈(如观看时长、评论、点赞、搜索等)、行为序列分析和关键词拆分(支持中文)等功能,并通过优化方案支持大规模用户场景。目录推荐系统简介数据库设计推荐算法类的实现优化方案总结与扩展推荐系统简介推荐系统的目标是根据用户的历史行为,预测
- 计算机考研之数据结构:大 O 记号
CS创新实验室
考研复习408考研数据结构
《数据结构》不仅是计算机考研408的必考科目,也是很多自命题学校要考的科目。这里将刊登系列文章,对《数据结构》这门课的某些问题进行讲解,供学习者参考。在计算机科学领域,算法的效率至关重要。随着数据规模的不断增大,一个高效的算法能够显著提升系统性能,而低效的算法则可能导致程序运行缓慢甚至无法正常工作。为了准确评估算法的效率,我们需要一种科学的方法来衡量算法随着输入规模增长时的运行时间或空间使用情况。
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 实测|用DeepSeek批量生成头条爆款标题,1小时搞定1周工作量!效率提升300%的秘诀全公开
kang_deepsk
AI写作人工智能ai
一、[痛点直击]创作者的标题困境标题内卷:头条每天新增200万条内容,90%的文章因标题平庸被算法“雪藏”。时间黑洞:人工想1个爆款标题平均耗时15分钟,团队日均消耗6小时。数据玄学:模仿热门标题却跑不出量,平台规则变化永远追不上。用户共鸣:“上月写了30篇优质长文,阅读量全不过万,问题竟出在标题上!”——某科技领域创作者自述二、[技术革命]DeepSeek的标题生成黑科技1.爆款基因解码系统实时
- 八大经典排序算法
BUG 劝退师
算法c语言排序算法算法数据结构
八大经典排序算法目录算法概览算法详解冒泡排序选择排序插入排序希尔排序归并排序快速排序堆排序计数排序性能对比1.算法概览排序算法平均时间复杂度空间复杂度稳定性排序方式冒泡排序O(n²)O(1)稳定In-place选择排序O(n²)O(1)不稳定In-place插入排序O(n²)O(1)稳定In-place希尔排序O(nlogn)O(1)不稳定In-place归并排序O(nlogn)O(n)稳定Out
- Vue中虚拟DOM的全面解析
七公子77
vuevue.js前端javascript
一、虚拟DOM的核心概念虚拟DOM(VirtualDOM)是一个轻量级的JavaScript对象,它是对真实DOM的抽象表示。在Vue中,组件模板会被编译成虚拟DOM树,通过Diff算法对比新旧虚拟DOM,计算出最小化的DOM操作,最终批量更新真实DOM。二、为什么需要虚拟DOM?1.直接操作DOM的问题性能瓶颈:DOM操作是浏览器中最昂贵的操作之一,频繁操作会导致性能下降。手动优化困难:开发者需
- 程序三大结构详解:顺序、选择、循环
禁小默
C算法数据结构c++pythonjava
目录前言一、顺序结构二、选择结构1.单分支结构2.双分支结构3.多分支结构4.条件匹配结构三、循环结构1.for循环2.while循环3.do-while循环四、总结与建议前言程序设计中,顺序结构、选择结构、循环结构是最基本的控制结构,也是任何程序的核心组成部分。这三种结构可以组合成任意复杂的算法,掌握它们是学习编程的第一步。本文将详细讲解这三种结构的定义、特点,并结合实际示例帮助理解其应用。一、
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 【算法通关村 Day7】递归与二叉树遍历
Ava_J
算法数据结构
递归与二叉树遍历青铜挑战理解递归递归算法是指一个方法在其执行过程中调用自身。它通常用于将一个问题分解为更小的子问题,通过重复调用相同的方法来解决这些子问题,直到达到基准情况(终止条件)。递归算法通常包括两个主要部分:基准情况(也叫递归终止条件):当问题规模足够小,递归可以停止,通常返回一个简单的结果。递归部分:将问题分解成更小的子问题,并在递归过程中调用自身。为了更清晰地说明递归,我给你一个经典的
- 文物“活”起来!元宇宙技术重塑文博行业
jimumeta
3D行业资讯3d展厅元宇宙vr科技文博博物馆
随着科技的飞速发展,元宇宙作为新兴的数字生活空间,正逐渐渗透到各行各业,文博行业也不例外。元宇宙在文博行业的应用,不仅为传统文博事业注入了新的活力,还极大地丰富了观众的参观体验,推动了文化的传承与创新。积木易搭深耕3D数字化技术领域,通过整合软硬件产品与服务,为文博领域提供数字化保护、数字化管理、数字化传播、数字化服务等综合解决方案。一、应用背景与意义元宇宙是利用科技手段进行链接与创造、与现实世界
- 如何快速搭建一个3D虚拟展厅?
jimumeta
虚拟展厅虚拟展厅3D展厅数字人vr
随着元宇宙概念的兴起,一个全新的虚拟、立体数字空间正逐步成为我们生活的一部分。在这个空间里,用户可以沉浸其中,进行丰富的交互操作,体验前所未有的无限可能。而如何快速搭建一个属于自己的元宇宙3D虚拟展厅,正成为越来越多企业和个人关注的焦点。一、虚拟展厅的类型1、企业展厅:通过独特的虚拟空间设计,企业展厅能够更全面地展示企业文化和优势。结合数字科技,企业可以直观、生动地展示产品,提升产品的吸引力,同时
- 什么是虚拟展厅?有何优势和特点?
jimumeta
虚拟展厅虚拟现实虚拟展厅视创云展3dvr
一、在线虚拟展厅的概述在线虚拟展厅,可以借助视创云展平台创建一个可3D漫游的虚拟空间,用户可以利用平台轻松自由布展,并通过在线链接或二维码的方式,分享这一独特的虚拟空间。此类展厅为用户提供了一个全新的视角,让他们能够全方位地欣赏和了解展示内容,从而摆脱了传统二维展示的局限性。此外,虚拟展厅还融入了多种交互功能,使得用户在漫游的同时,能够体验到更多的乐趣和互动性。二、在线虚拟展厅的优势1、强大的视觉
- 嵌入式人工智能应用-第四章 KNN 算法介绍 3
数贾电子科技
嵌入式人工智能应用人工智能算法linuxknn
KNN算法介绍1KNN介绍1.1基本概念1.1.1主要步骤1.1.2.距离计算:1.1.3进行预测:2分类介绍2.1KNN算法的K值说明2.2K值的选取2.3距离计算2.4KNN算法特点2.5KNN算法流程3实验验证3.1实验代码-具体代码可以从附件下载3.2演示效果1KNN介绍K邻近(K-NearestNeighbors,KNN)是一种广泛使用的监督学习算法,主要用于分类和回归任务。以下是K邻近
- 美国第3代哈希散列算法之SHA3(Keccak)
黄金龙PLUS
Hash算法哈希算法算法密码学人工智能网络安全
目录(1)Keccak算法简介(2)消息填充规则(3)海绵结构的实现过程(4)内部状态及表示方法(5)Keccak-f置换美国第3代哈希散列算法之SHA3(Keccak)(1)Keccak算法简介Keccak算法是美国国家标准与技术研究院(NIST)发起的SHA3竞赛的获胜算法,采用的是新型的海绵结构。根据摘要值长度的不同可以分为Keccak224、Keccak256、Keccak384、Kecc
- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 【Python 语法】heapq 模块
一杯水果茶!
python
堆的应用场景主要功能示例:使用`heapq`实现优先队列heapq是Python标准库中用于实现堆队列(heapqueue)算法的模块。堆队列是一个基于堆(heap)数据结构的优先队列,它能在O(logn)时间内执行插入、删除最小元素等操作。Python中的heapq模块实现的是一个最小堆(min-heap),即堆顶元素是堆中的最小元素。堆的应用场景优先队列:heapq可以用来实现优先队列,按优先
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- 【MATLAB例程】虚拟长基线校正INS,代码实现
MATLAB卡尔曼
matlab开发语言
实现水下航行器(AUV)的惯性导航(SINS)与虚拟长基线(VLBL)融合校正,抑制导航误差累积。文章目录惯性导航核心算法误差模型改进运行结果:代码代码总结核心功能技术亮点应用场景结果验证扩展建议代码依赖与运行创新点总结惯性导航核心算法采用四元数法进行姿态更新(如搜索结果3所述),解决大角度旋转问题实现速度/位置力学编排(参考搜索结果14的机械编排流程)虚拟长基线校正:模拟4个海底信标的测距数据(
- 三大平台云数据库生态服务对决
title:三大平台云数据库生态服务对决date:2025/2/21updated:2025/2/21author:cmdragonexcerpt:包含自动分片算法实现、跨云迁移工具链开发、智能索引推荐系统构建等核心内容,提供成本优化计算模型、灾备演练方案设计、性能调优路线图等完整解决方案。categories:前端开发tags:云数据库弹性扩展多云架构数据库即服务自动运维全球部署成本优化扫描二维
- 前端面试题---虚拟dom更新原理
*星之卡比*
前端前端vue.js
vue的生命周期里有"挂载"这个阶段这个阶段里,vue实例已经把准备好的组件挂载到页面,模版被编译成虚拟DOM,最终渲染到实际的dom中Vue虚拟DOM更新原理1数据变化:当组件数据变化时,Vue会重新生成虚拟DOM。2Diff算法:Vue比较新旧虚拟DOM,找到差异。3生成补丁:根据差异生成补丁(需要更新的DOM操作)。4应用补丁:将补丁应用到真实DOM,更新视图。5异步更新:Vue将更新操作异
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 深度学习归一化与正则化
鱼儿也有烦恼
深度学习深度学习
文章目录深度学习归一化与正则化1.归一化(Normalization)2.正则化(Regularization)深度学习归一化与正则化1.归一化(Normalization)定义:归一化是指通过某种算法将输入数据或神经网络层的激活值处理后限制在我们需要的特定范围内。它的目的是为了方便后续的数据处理,并加快程序的收敛速度。归一化的主要作用是统一样本的统计分布。在0到1之间的归一化代表的是概率分布,而
- Cavishape: Python编程与图像处理的艺术之作
laforet
本文还有配套的精品资源,点击获取简介:Cavishape可能是一个以Python编写的创新软件项目,它的名称和标签暗示着该项目具有非传统的设计和创新的特性。项目的主要元素可能与图形用户界面设计和图像处理相关,特别是以鱼形为设计元素。它可能采用了面向对象编程方法,图形界面可能利用了Python的GUI库,图像处理方面可能涉及特定的图形生成算法。项目可能使用了版本控制,如Git,并强调测试与调试的重要
- 【机器学习】向量化使得简单线性回归性能提升
若兰幽竹
机器学习机器学习线性回归人工智能
向量化使得简单线性回归性能提升一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析一、摘要本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘法计算a的值。然而,这种方式在计算性能上存在效率较低的问题。为了提高性能,视频引入了向量化运算的概念,即将计算过程从循环方式转变为向量之间的计算。通过向量
- openssl中dh算法实现
sjtu_chenchen
加密技术c++openssldh
Openssl的DH实现在crypt/dh目录中,各个源码如下:(1)dh.h定义了DH密钥方法数据结构以及各种函数。(2)dh_asn1.cDH密钥参数的DER编解码实现。(3)dh_lib.c实现了通用的DH函数,设计层面的。(4)dh_gen.c实现了生成DH密钥参数。(5)dh_key.c实现openssl提供的默认的DH_METHOD,实现了根据密钥参数生成DH公私钥,以及根据DH公钥(
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不