机器学习之特征工程-降维

当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。但不要盲目降维,当你在原数据上跑到了一个比较好的结果,又嫌它太慢的时候才进行降维,不然降了半天白降了。

常见的降维方法有主成分分析法(PCA)线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

主成分分析法(PCA)

Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。

通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数据内在结构)

使用decomposition库的PCA类选择特征的代码如下:

fromsklearn.decompositionimportPCA#主成分分析法,返回降维后的数据#参数n_components为主成分数目PCA(n_components=2).fit_transform(iris.data)

PCA追求的是在降维之后能够最大化保持数据的内在信息,并通过衡量在投影方向上的数据方差的大小来衡量该方向的重要性。但是这样投影以后对数据的区分作用并不大,反而可能使得数据点揉杂在一起无法区分。这也是PCA存在的最大一个问题,这导致使用PCA在很多情况下的分类效果并不好。具体可以看下图所示,若使用PCA将数据点投影至一维空间上时,PCA会选择2轴,这使得原本很容易区分的两簇点被揉杂在一起变得无法区分;而这时若选择1轴将会得到很好的区分结果。

LDA所追求的目标与PCA不同,不是希望保持数据最多的信息,而是希望数据在降维后能够很容易地被区分开来。后面会介绍LDA的方法,是另一种常见的线性降维方法。

线性判别分析法(LDA)

Linear Discriminant Analysis (也有叫做Fisher Linear Discriminant)是一种有监督的(supervised)线性降维算法。与PCA保持数据信息不同,LDA是为了使得降维后的数据点尽可能地容易被区分!

假设原始数据表示为X,(m*n矩阵,m是维度,n是sample的数量)

既然是线性的,那么就是希望找到映射向量a, 使得 a‘X后的数据点能够保持以下两种性质:

1、同类的数据点尽可能的接近(within class)

2、不同类的数据点尽可能的分开(between class)

所以呢还是上面PCA用的这张图,如果图中两堆点是两类的话,那么我们就希望他们能够投影到轴1去(PCA结果为轴2),这样在一维空间中也是很容易区分的。

使用lda库的LDA类选择特征的代码如下:

fromsklearn.ldaimportLDA

#线性判别分析法,返回降维后的数据

#参数n_components为降维后的维数LDA(n_components=2).fit_transform(iris.data, iris.target)

参考

简述多种降维算法

四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

作者:jacksu在

链接:https://www.jianshu.com/p/6a9db201cb13

來源:

著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

你可能感兴趣的:(机器学习之特征工程-降维)