- Python开发常用的三方模块如下:
换个网名有点难
python开发语言
Python是一门功能强大的编程语言,拥有丰富的第三方库,这些库为开发者提供了极大的便利。以下是100个常用的Python库,涵盖了多个领域:1、NumPy,用于科学计算的基础库。2、Pandas,提供数据结构和数据分析工具。3、Matplotlib,一个绘图库。4、Scikit-learn,机器学习库。5、SciPy,用于数学、科学和工程的库。6、TensorFlow,由Google开发的开源机
- 关于python版本与TensorFlow安装的版本问题
iiimharrygGc.
pythontensorflow开发语言
实测在conda环境下,python3.12的版本无法安装TensorFlow2.14.0(截至2024.5.21)最新版本在python3.7版本下正常安装ps:上述安装均在anacondanavigator软件内安装
- Vue + Django的人脸识别系统
DXSsssss
pythonDRFtensorflow人脸识别
最近在研究机器学习,刚好最近看了vue+Djangodrf的一些课程,学以致用,做了一个人脸识别系统。项目前端使用Vue框架,用到了elementui组件,写起来真是方便。比之前传统的dtl方便了太多。后端使用了drf,识别知识刚开始打算使用opencv+tensorflow,但是发现吧识别以后的结果返回到浏览器当中时使用opencv比较麻烦(主要是我太菜,想不到比较好的方法),因此最终使用了tf
- Awesome TensorFlow
weixin_30594001
人工智能移动开发大数据
AwesomeTensorFlowAcuratedlistofawesomeTensorFlowexperiments,libraries,andprojects.Inspiredbyawesome-machine-learning.WhatisTensorFlow?TensorFlowisanopensourcesoftwarelibraryfornumericalcomputationusin
- 【ShuQiHere】小白也能懂的 TensorFlow 和 PyTorch GPU 配置教程
ShuQiHere
tensorflowpytorch人工智能
【ShuQiHere】在深度学习中,GPU的使用对于加速模型训练至关重要。然而,对于许多刚刚入门的小白来说,如何在TensorFlow和PyTorch中指定使用GPU进行训练可能会感到困惑。在本文中,我将详细介绍如何在这两个主流的深度学习框架中指定使用GPU进行训练,并确保每一个步骤都简单易懂,跟着我的步骤来,你也能轻松上手!1.安装所需库首先,确保你已经安装了TensorFlow或PyTorch
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- 基于VGG的猫狗识别
卑微小鹿
tensorflowtensorflow
由于猫和狗的数据在这里,所以就做了一下分类的神经网络1、首先进行图像处理:importcsvimportglobimportosimportrandomos.environ['TF_CPP_MIN_LOG_LEVEL']='2'importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportlayersimportnum
- 轻松升级:Ollama + OpenWebUI 安装与配置【AIStarter】
ai_xiaogui
AI作画AI软件人工智能AI写作AIStarter
Ollama是一个开源项目,用于构建和训练大规模语言模型,而OpenWebUI则提供了一个方便的前端界面来管理和监控这些模型。本文将指导你如何更新这两个工具,并顺利完成配置。准备工作确保你的系统已安装Git和Python环境。安装必要的依赖库,如TensorFlow或PyTorch等。更新步骤克隆项目:使用Git命令行工具克隆最新的Ollama和OpenWebUI仓库到本地。更新代码:确保你正在使
- 深度学习之基于Tensorflow卷积神经网络水果蔬菜分类识别系统
qq1744828575
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与目标背景:在现代农业、智能零售等领域,自动化分类与识别技术对于提高效率、优化供应链管理具有重要意义。为了响应这一需求,本项目旨在构建一个基于深度学习技术的水果蔬菜分类识别系统。目标:构建一个准确率高、性能稳定的水果蔬菜分类识别模型,利用Tensorflow框架
- ImportError: cannot import name ‘conv_utils‘ from ‘keras.utils‘
CheCacao
keras深度学习pythontensorflowtensorflow2人工智能
将fromkeras.utilsimportconv_utils改为fromtensorflow.python.keras.utilsimportconv_utilsImportError:nomodulenamed'tensorflow.keras.engine将fromkeras.engine.topologyimportLayer改为fromtensorflow.python.keras.l
- jupyter出错ImportError: cannot import name ‘np_utils‘ from ‘keras.utils‘ ,怎么解决?
七月初七淮水竹亭~
人工智能pythonjupyterkeras深度学习
文章前言此篇文章主要是记录一下我遇到的问题以及我是如何解决的,希望下次遇到类似问题可以很快解决。此外,也希望能帮助到大家。遇到的问题出错:ImportError:cannotimportname'np_utils'from'keras.utils',如图:如何解决首先我根据网上文章的一些提示,将fromkeras.utilsimportnp_utils换成了fromtensorflow.keras
- tensorflow和python不兼容_tensorflow与numpy的版本兼容性问题的解决
weixin_39727934
在Python交互式窗口导入tensorflow出现了下面的错误:ox8免费资源网root@ubuntu:~#python3Python3.6.8(default,Oct72019,12:59:55)[GCC8.3.0]onlinuxType"help","copyright","credits"or"license"formoreinformation.>>>importtensorflowas
- numpy python 兼容_tensorflow与numpy的版本兼容性问题
weixin_39761822
numpypython兼容
在Python交互式窗口导入tensorflow出现了下面的错误:root@ubuntu:~#python3Python3.6.8(default,Oct72019,12:59:55)[GCC8.3.0]onlinuxType"help","copyright","credits"or"license"formoreinformation.>>>importtensorflowastf;/usr/
- 安装tensorflow2.5.0 发现 tensorflow 和 numba 两者对应Numpy版本冲突
GJK_
tensorflownumpy人工智能
问题:python3.8安装tensorflow2.5.0发现tensorflow和numba两者对应Numpy版本冲突tensorflow-gpu2.5.0requiresnumpy~=1.19.2numba0.58.1requiresnumpy=1.22解决方法:将numba降低版本为0.53pipinstallnumba==0.53再将numpy版本改为1.19.2pipinstallnum
- python3.7安装keras教程_python 3.7 安装 sklearn keras(tf.keras)
weixin_39641103
#1sklearn一般方法网上有很多教程,不再赘述。注意顺序是numpy+mkl,然后scipy的环境,scipy,然后sklearn#2anocondaanaconda原始的环境已经自带了sklearn,这里说一下新建环境(比如创建了一个tensorflow的环境),activatetensorflow2.0,然后condainstallsklearn即可,会帮你把各种需要的库都安装。#kera
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 将本地已有的项目上传到新建的git仓库的方法
10676
将本地已有的一个非git项目上传到新建的git仓库的方法一共有两种。一、克隆+拷贝第一种方法比较简单,直接用把远程仓库拉到本地,然后再把自己本地的项目拷贝到仓库中去。然后push到远程仓库上去即可。此方法适用于本地项目不是一个git仓库的情况。1、首先克隆
[email protected]:yuanmingchen/tensorflow_study.git2、然后复制自己项目的所有文件到
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- OSError: libnccl.so.2: cannot open shared object file: No such file or directory
王小葱鸭
python
linux安装完torch或者tensorflow的gpu版本,安装没问题,但是import就有问题,报错OSError:libnccl.so.2:cannotopensharedobjectfile:Nosuchfileordirectory,是缺少nvidia的ncll,下面介绍解决方法:1安装ncll下载链接https://developer.nvidia.com/nccl/nccl-dow
- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- 【人工智能】大话什么是神经网络
路上阳光
什么是人工智能?通俗来讲,就是让机器能像人一样思考。这个无需解释太多,因为通过各种科幻电影我们已经对人工智能很熟悉了。大家现在感兴趣的应该是——如何实现人工智能?从1956年夏季首次提出“人工智能”这一术语开始,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- MacBook Air M1 使用 miniconda 安装python3.11.7 和 tensorflow2.16.1详细 - TensorFlow自学笔记1
青瓷看世界
tensorflowtensorflow人工智能macpython深度学习
1m1mac安装xcode命令工具在Terminal终端执行以下代码:xcode-select--install2下载支持m1芯片arm64的miniconda在miniconda官网,找到下图中保护AppleM1的bash安装包,Miniconda—Anacondadocumentation3安装miniconda在Terminal执行下列代码:1)cd"miniconda下载目录"2)bash
- 机器学习框架巅峰对决:TensorFlow vs. PyTorch vs. Scikit-Learn实战分析
@sinner
技术选型机器学习tensorflowpytorchscikit-learn
1.引言1.1机器学习框架的重要性在机器学习的黄金时代,框架的选择对于开发高效、可扩展的模型至关重要。合适的框架可以极大地提高开发效率,简化模型的构建和训练过程,并支持大规模的模型部署。因此,了解和选择最合适的机器学习框架对于研究人员和工程师来说是一个关键的步骤。1.2三大框架概览:TensorFlow、PyTorch、Scikit-Learn目前,最流行的机器学习框架主要有TensorFlow、
- Tensorflow2.16中的Keras包含哪些层(layers)?层的功能及参数详细解释 -- TensorFlow自学笔记6
青瓷看世界
tensorflowtensorflowkeras人工智能
在Keras中,层(Layer)是构建神经网络的基本组件。Keras提供了多种类型的层,用于处理不同类型的输入数据和执行特定的数学操作。英文版可参考TensorFlow官方文档:Module:tf.keras.layers|TensorFlowv2.16.1一.层的分类1.基本网络层1.1.Dense层用于执行全连接操作;1.2.卷积层Conv1D、Conv2D、Conv3D层,用于执行一维、
- Tensorflow2 如何扩展现有数据集(缩放、随机旋转、水平翻转、平移等),从而提高模型的准确率 -- Tensorflow自学笔记14
青瓷看世界
tensorflow人工智能python
实际生活中的数据集,往往不是标准的数据,而是有倾斜角度、有旋转、有偏移的数据,为了提高数据集的真实性,提高模型预测的准确率,可以用ImageDataGenerator函数来扩展数据集importtensorflowastffromtensorflow.keras.preprocessing.imageimportImageDataGeneratorimage_gen_train=ImageData
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 机器学习100天-Day2503 Tensorboard 训练数据可视化(线性回归)
我的昵称违规了
首页.jpg源代码来自莫烦python(https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/4-1-tensorboard1/)今日重点读懂教程中代码,手动重写一遍,在浏览器中获取到训练数据Tensorboard是一个神经网络可视化工具,通过使用本地服务器在浏览器上查看神经网络训练日志,生成相应的可是画图,帮助炼丹师
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不