目录
yolov8导航
YOLOv8(附带各种任务详细说明链接)
引言
背景介绍
级联分组注意力模块
EfficientVit 相关资源
YOLOv8 相关资源
EfficientViT改进YOLOV8实现
EfficientViT代码及概述
第一部分
第二部分
第三部分
第四部分
第五部分
第六部分
开箱即用的YOLOV8-EffucuebtViT项目源码
总结
如果大家想要了解关于yolov8的其他任务和相关内容可以点击这个链接,我这边整理了许多其他任务的说明博文,后续也会持续更新,包括yolov8模型优化、sam等等的相关内容。
随着深度学习技术的不断发展,实时物体检测领域正迅速演进。在这篇博客中,我们将深入探讨一种结合了EfficientVit轻量化技术和YOLOV8的级联分组注意力模块的全新实时网络架构。我们将探讨它如何提升物体检测的效率和准确性,同时保持低延迟和高实时性。
这篇博客可能并不适合纯新手小白直接上手观看,如果基础欠佳的小伙伴可以点击上面的YOLOV8导航的链接先观看一下基础部分,先对yolov8有一个了解之后再来看这篇博客。
我这边的博客会更重视项目的实现,后续我这边会简单的概述一下相关资料,并且附上一些相关的资料,供给大家参考,并且我这边会重点尽可能的简洁的去概述如何用yolov8的去实现如何实现改进。(我这边整理好了直接能跑通的yolov8-efficientViT项目源码可以直接下载)
以下我这边整理了一些相关的参考文献和参考资源,并附带了链接,希望能给大家提供一些帮助或者思路:
以下我这边整理了一些相关的参考文献和参考资源,并附带了链接,希望能给大家提供一些帮助或者思路:
我这边会简答的概述代码相关的内容,不会一步步的教您这边代码具体如何去配置,因为网上开源的代码很多,但是我这边会专门的整理一份带有数据直接可以跑通的代码供给大家直接下载使用。
这里我这边任务代码总共分为5个部分,我会分别的去进行注释讲解。
import torch
from timm.models.layers import SqueezeExcite
import numpy as np
import itertools
# 定义可公开访问的类名
__all__ = ['EfficientViT_M0', 'EfficientViT_M1', 'EfficientViT_M2', 'EfficientViT_M3', 'EfficientViT_M4', 'EfficientViT_M5']
# 自定义的序列化模块,结合了卷积层和批处理规范化层
class Conv2d_BN(torch.nn.Sequential):
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000):
super().__init__()
# 添加2D卷积层
self.add_module('c', torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
# 添加批处理规范化层
self.add_module('bn', torch.nn.BatchNorm2d(b))
# 初始化批处理规范化层的权重和偏置
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
# 用于部署模式的转换,修改了卷积层和批处理规范化层
@torch.no_grad()
def switch_to_deploy(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps)**0.5
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
# 用于替换模型中的批处理规范化层
def replace_batchnorm(net):
for child_name, child in net.named_children():
if hasattr(child, 'fuse'):
setattr(net, child_name, child.fuse())
elif isinstance(child, torch.nn.BatchNorm2d):
setattr(net, child_name, torch.nn.Identity())
else:
replace_batchnorm(child)
# PatchMerging: 用于降低输入的空间维度并增加通道数
class PatchMerging(torch.nn.Module):
def __init__(self, dim, out_dim, input_resolution):
super().__init__()
hid_dim = int(dim * 4)
self.conv1 = Conv2d_BN(dim, hid_dim, 1, 1, 0, resolution=input_resolution)
self.act = torch.nn.ReLU()
self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim, resolution=input_resolution)
self.se = SqueezeExcite(hid_dim, .25)
self.conv3 = Conv2d_BN(hid_dim, out_dim, 1, 1, 0, resolution=input_resolution // 2)
def forward(self, x):
x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x))))))
return x
# Residual: 实现残差连接结构,可选择性地使用dropout
class Residual(torch.nn.Module):
def __init__(self, m, drop=0.):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach()
else:
return x + self.m(x)
# FFN: 前馈网络,由两个卷积层和ReLU激活函数组成
class FFN(torch.nn.Module):
def __init__(self, ed, h, resolution):
super().__init__()
self.pw1 = Conv2d_BN(ed, h, resolution=resolution)
self.act = torch.nn.ReLU()
self.pw2 = Conv2d_BN(h, ed, bn_weight_init=0, resolution=resolution)
def forward(self, x):
x = self.pw2(self.act(self.pw1(x)))
return x
这部分代码定义了模型中使用的几个关键组件,如PatchMerging、Residual和FFN。
# CascadedGroupAttention: 实现级联群体注意力机制
class CascadedGroupAttention(torch.nn.Module):
def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, kernels=[5, 5, 5, 5]):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.d = int(attn_ratio * key_dim)
self.attn_ratio = attn_ratio
# 初始化查询、键、值的卷积层和深度卷积层
qkvs = []
dws = []
for i in range(num_heads):
qkvs.append(Conv2d_BN(dim // num_heads, self.key_dim * 2 + self.d, resolution=resolution))
dws.append(Conv2d_BN(self.key_dim, self.key_dim, kernels[i], 1, kernels[i]//2, groups=self.key_dim, resolution=resolution))
self.qkvs = torch.nn.ModuleList(qkvs)
self.dws = torch.nn.ModuleList(dws)
self.proj = torch.nn.Sequential(torch.nn.ReLU(), Conv2d_BN(self.d * num_heads, dim, bn_weight_init=0, resolution=resolution))
# 计算注意力偏置
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N))
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,C,H,W)
B, C, H, W = x.shape
trainingab = self.attention_biases[:, self.attention_bias_idxs]
feats_in = x.chunk(len(self.qkvs), dim=1)
feats_out = []
feat = feats_in[0]
for i, qkv in enumerate(self.qkvs):
if i > 0: # 将前一输出加到输入中
feat = feat + feats_in[i]
feat = qkv(feat)
q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.d], dim=1)
q = self.dws[i](q)
q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) # B, C/h, N
attn = ((q.transpose(-2, -1) @ k) * self.scale + (trainingab[i] if self.training else self.ab[i]))
attn = attn.softmax(dim=-1)
feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W)
feats_out.append(feat)
x = self.proj(torch.cat(feats_out, 1))
return x
# LocalWindowAttention: 在局部窗口内应用注意力机制
class LocalWindowAttention(torch.nn.Module):
def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5]):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.resolution = resolution
assert window_resolution > 0, 'window_size must be greater than 0'
self.window_resolution = window_resolution
self.attn = CascadedGroupAttention(dim, key_dim, num_heads, attn_ratio=attn_ratio, resolution=window_resolution, kernels=kernels)
def forward(self, x):
B, C, H, W = x.shape
# 如果输入小于窗口大小,则直接应用注意力机制
if H <= self.window_resolution and W <= self.window_resolution:
x = self.attn(x)
else:
# 否则,对输入进行分割并在每个窗口内应用注意力
x = x.permute(0, 2, 3, 1)
pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution
pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution
padding = pad_b > 0 or pad_r > 0
if padding:
x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_resolution
nW = pW // self.window_resolution
x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3).reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2)
x = self.attn(x)
x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.permute(0, 3, 1, 2)
return x
这部分代码实现了级联群体注意力和局部窗口注意力机制,是模型中用于捕获图像特征的核心组件。
# EfficientViTBlock: 定义了EfficientViT模型的基本构建块
class EfficientViTBlock(torch.nn.Module):
def __init__(self, type, ed, kd, nh=8, ar=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5]):
super().__init__()
self.dw0 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
self.ffn0 = Residual(FFN(ed, int(ed * 2), resolution))
# 根据type参数选择不同的混合器
if type == 's':
self.mixer = Residual(LocalWindowAttention(ed, kd, nh, attn_ratio=ar, resolution=resolution, window_resolution=window_resolution, kernels=kernels))
self.dw1 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
self.ffn1 = Residual(FFN(ed, int(ed * 2), resolution))
def forward(self, x):
return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x)))))
# EfficientViT: 构建整个EfficientViT模型
class EfficientViT(torch.nn.Module):
def __init__(self, img_size=400, patch_size=16, frozen_stages=0, in_chans=3, stages=['s', 's', 's'],
embed_dim=[64, 128, 192], key_dim=[16, 16, 16], depth=[1, 2, 3], num_heads=[4, 4, 4],
window_size=[7, 7, 7], kernels=[5, 5, 5, 5], down_ops=[['subsample', 2], ['subsample', 2], ['']],
pretrained=None, distillation=False):
super().__init__()
resolution = img_size
# 图像块嵌入
self.patch_embed = torch.nn.Sequential(Conv2d_BN(in_chans, embed_dim[0] // 8, 3, 2, 1, resolution=resolution), torch.nn.ReLU(),
Conv2d_BN(embed_dim[0] // 8, embed_dim[0] // 4, 3, 2, 1, resolution=resolution // 2), torch.nn.ReLU(),
Conv2d_BN(embed_dim[0] // 4, embed_dim[0] // 2, 3, 2, 1, resolution=resolution // 4), torch.nn.ReLU(),
Conv2d_BN(embed_dim[0] // 2, embed_dim[0], 3, 1, 1, resolution=resolution // 8))
# 初始化不同阶段的块
self.blocks1, self.blocks2, self.blocks3 = [], [], []
for i, (stg, ed, kd, dpth, nh, ar, wd, do) in enumerate(zip(stages, embed_dim, key_dim, depth, num_heads, [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))], window_size, down_ops)):
for d in range(dpth):
eval('self.blocks' + str(i+1)).append(EfficientViTBlock(stg, ed, kd, nh, ar, resolution, wd, kernels))
if do[0] == 'subsample':
blk = eval('self.blocks' + str(i+2))
resolution_ = (resolution - 1) // do[1] + 1
blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i], embed_dim[i], 3, 1, 1, groups=embed_dim[i], resolution=resolution)),
Residual(FFN(embed_dim[i], int(embed_dim[i] * 2), resolution)),))
blk.append(PatchMerging(*embed_dim[i:i + 2], resolution))
resolution = resolution_
blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i + 1], embed_dim[i + 1], 3, 1, 1, groups=embed_dim[i + 1], resolution=resolution)),
Residual(FFN(embed_dim[i + 1], int(embed_dim[i + 1] * 2), resolution)),))
self.blocks1 = torch.nn.Sequential(*self.blocks1)
self.blocks2 = torch.nn.Sequential(*self.blocks2)
self.blocks3 = torch.nn.Sequential(*self.blocks3)
# 预测每个阶段输出的通道数
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
def forward(self, x):
outs = []
x = self.patch_embed(x)
x = self.blocks1(x)
outs.append(x)
x = self.blocks2(x)
outs.append(x)
x = self.blocks3(x)
outs.append(x)
return outs
这部分代码定义了EfficientViT模型的主体结构。
# 不同配置的EfficientViT模型定义
EfficientViT_m0 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [64, 128, 192],
'depth': [1, 2, 3],
'num_heads': [4, 4, 4],
'window_size': [7, 7, 7],
'kernels': [7, 5, 3, 3],
}
EfficientViT_m1 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [128, 144, 192],
'depth': [1, 2, 3],
'num_heads': [2, 3, 3],
'window_size': [7, 7, 7],
'kernels': [7, 5, 3, 3],
}
EfficientViT_m2 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [128, 192, 224],
'depth': [1, 2, 3],
'num_heads': [4, 3, 2],
'window_size': [7, 7, 7],
'kernels': [7, 5, 3, 3],
}
EfficientViT_m3 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [128, 240, 320],
'depth': [1, 2, 3],
'num_heads': [4, 3, 4],
'window_size': [7, 7, 7],
'kernels': [5, 5, 5, 5],
}
EfficientViT_m4 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [128, 256, 384],
'depth': [1, 2, 3],
'num_heads': [4, 4, 4],
'window_size': [7, 7, 7],
'kernels': [7, 5, 3, 3],
}
EfficientViT_m5 = {
'img_size': 224,
'patch_size': 16,
'embed_dim': [192, 288, 384],
'depth': [1, 3, 4],
'num_heads': [3, 3, 4],
'window_size': [7, 7, 7],
'kernels': [7, 5, 3, 3],
}
# 定义EfficientViT的各个版本的构造函数
def EfficientViT_M0(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m0):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
def EfficientViT_M1(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m1):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
def EfficientViT_M2(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m2):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
def EfficientViT_M3(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m3):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
def EfficientViT_M4(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m4):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
def EfficientViT_M5(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m5):
model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
if fuse:
replace_batchnorm(model)
return model
这部分代码定义了不同配置的EfficientViT模型,包括加载预训练权重和批处理规范化层的替换。
# update_weight: 更新模型的权重,通常用于加载预训练的权重
def update_weight(model_dict, weight_dict):
idx, temp_dict = 0, {}
for k, v in weight_dict.items():
# 如果权重在模型字典中存在且形状匹配,则更新该权重
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
idx += 1
model_dict.update(temp_dict)
print(f'loading weights... {idx}/{len(model_dict)} items')
return model_dict
以上是完整的EfficientViT源码,包含中文注释。这些注释解释了代码中每个类和函数的主要功能和用途,有助于理解整个模型的结构和工作原理。
注:这份源码是直接就可以用的源码,但是这里的示意数据就是coco128,数据集很小,如果您这边需要做实验对比,尽量找一些大一些的数据集。
YOLOv8-EfficientViT: 创新融合用于目标检测的高效网络可执行项目源码
文章提供了YOLOv8-EfficientViT项目的源代码,分为六个主要部分,每部分都有详细的中文注释,有助于读者更好地理解和应用。本博客的目标是为读者提供一个全面、实用的YOLOv8和EfficientViT结合应用指南,特别适合那些希望在复杂视觉任务中应用最新技术的专业人士。通过这篇文章,读者能够获得EfficientViT和YOLOv8结合应用的简单理解,还能够掌握将这一先进模型应用于实际目标检测任务的知识。如果有哪里写的不够清晰,小伙伴本可以给评论或者留言,我这边会尽快的优化博文内容,另外如有需要,我这边可支持技术答疑与支持。