- 探索深度学习的奥秘:从理论到实践的奇幻之旅
小周不想卷
深度学习
目录引言:穿越智能的迷雾一、深度学习的奇幻起源:从感知机到神经网络1.1感知机的启蒙1.2神经网络的诞生与演进1.3深度学习的崛起二、深度学习的核心魔法:神经网络架构2.1前馈神经网络(FeedforwardNeuralNetwork,FNN)2.2卷积神经网络(CNN)2.3循环神经网络(RNN)及其变体(LSTM,GRU)2.4生成对抗网络(GAN)三、深度学习的魔法秘籍:算法与训练3.1损失
- (感知机-Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence机器学习人工智能感知机Perceptron
定义假设输入空间(特征空间)是χ\chiχ⊆Rn\subseteqR^n⊆Rn,输出空间是y={+1,−1}=\{+1,-1\}={+1,−1}。输入x∈χx\in\chix∈χ表示实例的特征向量,对应于输入空间(特征空间)的点;输出y∈y\iny∈y表示实例的类别。由输入空间到输出空间的如下函数:f(x)=sign(ω⋅x+b)f(x)=sign(\omega\cdotx+b)f(x)=sign
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 人人都能懂的机器学习——用Keras搭建人工神经网络02
苏小菁在编程
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
- 爆改YOLOv8 | yolov8添加GAM注意力机制
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测人工智能计算机视觉
1,本文介绍GAM(GlobalAttentionMechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:通道注意力子模块:3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕捉更多维度的特征。两层MLP:通过一个两层的多层感知机(MLP)增强跨维度的通道-空间依赖性,提升
- 用keras对电影评论进行情感分析
Phoenix Studio
深度学习keras人工智能深度学习
文章目录下载IMDb数据读取IMDb数据建立分词器将评论数据转化为数字列表让转换后的数字长度相同加入嵌入层建立多层感知机模型加入平坦层加入隐藏层加入输出层查看模型摘要训练模型评估模型准确率进行预测查看测试数据预测结果完整函数用RNN模型进行IMDb情感分析用LSTM模型进行IMDb情感分析GITHUB地址https://github.com/fz861062923/Keras下载IMDb数据#下载
- TenorFlow多层感知机识别手写体
Phoenix Studio
深度学习opencv数据挖掘语音识别机器学习神经网络
文章目录数据准备建立模型建立输入层x建立隐藏层h1建立隐藏层h2建立输出层定义训练方式建立训练数据label真实值placeholder定义lossfunction选择optimizer定义评估模型的准确率计算每一项数据是否正确预测将计算预测正确结果,加总平均开始训练画出误差执行结果画出准确率执行结果评估模型的准确率进行预测找出预测错误GITHUB地址https://github.com/fz86
- GAN生成对抗性网络
Dirschs
深度学习GAN生成对抗网络人工智能神经网络
一、GAN原理出发点:机器学习中生成模型的问题无监督学习是机器学习和未来人工智能的突破点,生成模型是无监督学习的关键部分特点:不需要MCMC或者变分贝叶斯等复杂的手段,只需要在G和D中对应的多层感知机中运行反向传播或者梯度下降算法模型通常使用神经网络,其拟合能力最好G(Generator):用于捕获数据分布的生成模型(生成图像的网络);接收到随机的噪声z,通过噪声z生成图像。尽可能多地模拟、建模和
- 【机器学习笔记】10 人工神经网络
RIKI_1
机器学习机器学习笔记人工智能
人工神经网络发展史1943年,心理学家McCulloch和逻辑学家Pitts建立神经网络的数学模型,MP模型每个神经元都可以抽象为一个圆圈,每个圆圈都附带特定的函数称之为激活函数,每两个神经元之间的连接的大小的加权值即为权重。1960年代,人工网络得到了进一步地发展感知机和自适应线性元件等被提出。M.Minsky仔细分析了以感知机为代表的神经网络的局限性,指出了感知机不能解决非线性问题,这极大影响
- Matlab DNN多层感知机进行图像分类——附源码分享
我是狮子搏兔
Predictionmatlabmatlabdnnpython
提示:麻烦点赞,拒绝白嫖文章目录前言一、数据来源二、训练+预测_一步到位源码1.DNN.m总结前言Python不香吗?非得用matlab来搞机器学习的东西?不是不是,matlab也有集成了许多机器学习算法,当然,都是一些非常基础的机器学习算法。深度学习还是得向python看齐。今天试用了一下matlab自带的DNN模型,封装在newff函数里,寥寥几行代码,非常简洁。提示:以下是本篇文章正文内容,
- 机器学习入门--多层感知机原理与实践
Dr.Cup
机器学习入门机器学习人工智能
神经网络与多层感知机神经网络是一种模仿生物神经系统结构和功能的计算模型。它由许多个节点(或称为神经元)组成,这些节点通过连接权重相互连接。神经网络的输入经过一系列的加权求和和激活函数变换后,得到输出结果。神经网络的训练过程主要包括前向传播和反向传播两个阶段。前向传播是指数据从输入层逐层传递到输出层的过程,每一层的节点都会根据输入值和连接权重计算输出值。反向传播是指通过计算损失函数对网络参数进行梯度
- 统计学习方法(李航)--第二章 感知机(比较基础)
人間煙火Just
感知机是二分类的线性分类模型,属于判别模型,包括原始形式和对偶形式。(一)感知机模型公式为:f是输出,x是输入,w和b是参数,sign是符号函数(大于0为1,小于0为-1)几何解释:对于特征空间Rn中的一个超平面S,w是S的法向量,b是截距,将超平面空间划分为两个部分,完成2分类任务。(二)学习策略1.数据集的线性可分性:若存在wx+b的超平面可以将数据集完全分割,则称为线性可分。2.学习策略(以
- Pytorch 复习总结 1
ScienceLi1125
pythonpytorchpython
Pytorch复习总结,仅供笔者使用,参考教材:《动手学深度学习》本文主要内容为:Pytorch张量的常见运算、线性代数、高等数学、概率论。Pytorch张量的常见运算、线性代数、高等数学、概率论部分见Pytorch复习总结1;Pytorch线性神经网络部分见Pytorch复习总结2;Pytorch多层感知机部分见Pytorch复习总结3;Pytorch深度学习计算部分见Pytorch复习总结4;
- 【深度学习】: MNIST手写数字识别
X.AI666
深度学习深度学习人工智能机器学习
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,可接实验指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例2:构建自己的多层感知机:MNIST手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1数据集简介MNIS
- 机器学习算法之支持向量机(SVM)
浅白Coder
支持向量机算法机器学习
SVM恐怕大家即使不熟悉,也听说过这个大名吧,这一节我们就介绍这相爱相杀一段内容。前言:在介绍一个新内容之SVM前,我们不觉映入眼帘的问题是为什么要引入SVM?吃的香,睡的着的情况下,肯定不会是没事干吧~首先,SVM是一个二分类模型【图1】,实质是定义在特征空间的判别模型,其实我们大家应该比较熟悉感知机算法了(我们前面有讲过),也就是找一个超平面来划分特征空间,可是满足该条件的超平面有无穷无尽呀!
- 【神经网络】单层感知器
Loong_DQX
感知器神经网络机器学习深度学习
在了解感知机之前的先知道1943年Mccilloch和Pitts所提出的M-P模型。M-P模型其实就是现在的神经网络中的一个神经元,但是与之不同的点在于它没有非线性激活函数激活,也不能这么说,就是没有类似sigmoid或者tanh函数激活,而它用的仅仅是一个阈值去激活。所以它的数学表达式为:此处的f函数就是阈值函数。但是这里的权重w和偏置b都是人为设定的,并不存在学习一说,这就是M-P模型与单层感
- 06-20201012 感知机-1从感知机到神经网络
野山羊骑士
转载https://www.jianshu.com/p/7de24ee4a196转载https://www.jianshu.com/p/7de24ee4a196为什么?为什么学习神经网络都要学习感知机呢?通过一系列资料学习,感知机最大的贡献还是提供了在链接主义的智能计算中的一种求解思路(智能计算的三大流派之一),加之后来的非线性激活函数与反向传播,渐渐发展到现在的深度学习。从概念上,感知机可以认为
- 李沐《动手学深度学习》注意力机制
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 深度学习入门(鱼书)
weixin_42963026
深度学习人工智能
学习笔记第3章神经网络3.1从感知机到神经网络3.1.1神经网络的例子图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去1后的数量)来表示网络的名称。3.1.2复习感知机3.1.3激活函数登场刚才登场的h(x)函数会将输
- 《深度学习入门》学习笔记
YY_oot
机器学习深度学习python神经网络人工智能
原书:《深度学习入门:基于Python的理论与实现》文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧6.1寻找最优参数6.3权重的初始值6.4正则化6.4超参数的验证第七章卷积神经网络卷积池化CNN的可视化代表性的CNN第八章深度学习提高识别精度VGGGoogLeNetResNe
- 深度学习入门笔记:第二章感知机
维持好习惯
深度学习深度学习笔记人工智能
深度学习入门笔记:第二章感知机笔记来源书籍:《深度学习入门:基于+Python+的理论与实现》文章目录深度学习入门笔记:第二章感知机前言为什么学习感知机2.1感知机是什么2.2简单逻辑电路2.2.1与门2.2.2与非门和或门2.3感知机实现2.3.1简单的实现2.3.2导入权重和偏置2.3.3使用权重和偏置的实现2.4感知机的局限性2.4.1异或门2.4.2线性和非线性2.5多层感知机2.5.1已
- 深度学习入门学习笔记之——神经网络
前丨尘忆·梦
tensorflow深度学习神经网络深度学习
神经网络上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- 李沐《动手学深度学习》循环神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 李沐《动手学深度学习》卷积神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn神经网络算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念目录系列文章一、LeNet
- 01神经网络的理论及实现
我闻 如是
神经网络人工智能算法
感知机的缺点就是需要设置合适的权重,而权重的设置都是人工操作的。1、从感知机到神经网络重新画出感知机的模型,在图上加上偏置,由于偏置始终为1,所以颜色加深。图1-1感知机模型引入新函数(激活函数):(1-1)将感知机表达式改为:(1-2)也可以分开写为:(1-3)(1-4)根据公式(1-3)和(1-4)可以将图1-1更改为图1-2模型。图1-2加入激活函数的感知机图2、激活函数激活函数会将输入信号
- 【机器学习300问】21、什么是激活函数?常见激活函数都有哪些?
小oo呆
【机器学习】机器学习人工智能
在我写的上一篇文章中介绍了感知机(单个神经元)的构成,其中就谈到了神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出值。这也称为“神经元被激活”。如果想对神经网络是什么有更多了解的小伙伴可以去看看我上一篇文章,链接我发在下面啦!【机器学习300问】20、什么是神经网络?和深度学习什么关系?http://t.csdnimg.cn/47Sgq承接上文中谈到的“神经元被激活”,
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持