LeetCode-python 85.最大矩形

题目链接
难度:困难       类型:动态规划


给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。

示例

输入:
[["1","0","1","0","0"],
["1","0","1","1","1"],
["1","1","1","1","1"],
["1","0","0","1","0"]]
输出: 6

解题思路


矩形的面积等于,分别找出和即可

  1. 计算
    row[i]是matrix的第i行,每行有n列,例如示例中,n=5
    到达第行时
    当row[i][j] == '0' 时(其中),
    当row[i][j] == '1' 时(其中),
    例如,i = 2时,h = [3, 1, 3, 2, 2],每一行都要求出h,一共求4组
  2. 找到
    对于第2行的h,[3, 1, 3, 2, 2],前三行所构成的矩形的面积可以是1,2,3,4,6,这是因为去了不同的所造成的
    当是,面积等于6
    [["x","x","x","x","x"],
    ["x","x","1","1","1"],
    ["x","x","1","1","1"],
    ["x","x","x","x","x"]
    当是,面积等于5
    [["x","x","x","x","x"],
    ["x","x","x","x","x"],
    ["1","1","1","1","1"],
    ["x","x","x","x","x"]
    找出所有的和的组合,像极了84题:柱状图中最大的矩形

代码实现

class Solution:
    def maximalRectangle(self, matrix: List[List[str]]) -> int:
        if not matrix or not matrix[0]:
            return 0
        n = len(matrix[0])
        height = [0] * (n+1)
        max_area = 0
        for row in matrix:
            # 计算h
            for i in range(n):
                height[i] = height[i]+1 if row[i]=='1' else 0
            # 找出所有h和w的组合 
            stack = [-1]
            for j in range(n + 1):
                while height[j] < height[stack[-1]]:
                    h = height[stack.pop()]
                    w = j - 1 - stack[-1]
                    max_area = max(max_area, h * w)                
                stack.append(j)            
        return max_area

本文链接:https://www.jianshu.com/p/67cd5ba8802c

你可能感兴趣的:(LeetCode-python 85.最大矩形)